Building fire risk assessment based on machine learning

Aiming Xu, Beibei Sun
{"title":"Building fire risk assessment based on machine learning","authors":"Aiming Xu, Beibei Sun","doi":"10.54941/ahfe1001071","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid development of economy, the continuous expansion of trading areas and buildings has caused more serious fire risks. In order to reduce the incidence of fire accidents and effectively improve building fire safety management, it is necessary to explore the application of the machine learning (ML) algorithms in fire risk assessment. This study aims to propose a ML framework for building quantitative fire risk assessment and use four regression algorithms with the data set which is collected by the Fire Safety Management System of Social Units in Jiangsu Province to get fire risk score of each company and the Mean Square Error (MSE) is used to evaluate the models. The final result shows DNN has the best performance in the experiment, which is of great significance to promote the intelligence and accuracy of fire prevention and control in smart city construction.","PeriodicalId":292077,"journal":{"name":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, with the rapid development of economy, the continuous expansion of trading areas and buildings has caused more serious fire risks. In order to reduce the incidence of fire accidents and effectively improve building fire safety management, it is necessary to explore the application of the machine learning (ML) algorithms in fire risk assessment. This study aims to propose a ML framework for building quantitative fire risk assessment and use four regression algorithms with the data set which is collected by the Fire Safety Management System of Social Units in Jiangsu Province to get fire risk score of each company and the Mean Square Error (MSE) is used to evaluate the models. The final result shows DNN has the best performance in the experiment, which is of great significance to promote the intelligence and accuracy of fire prevention and control in smart city construction.
基于机器学习的建筑火灾风险评估
近年来,随着经济的快速发展,贸易面积和建筑物的不断扩大,造成了更严重的火灾风险。为了降低火灾事故发生率,有效提高建筑消防安全管理水平,有必要探索机器学习(ML)算法在火灾风险评估中的应用。本研究旨在提出一种用于定量火灾风险评估的机器学习框架,并利用江苏省社会单位消防安全管理系统收集的数据集,使用四种回归算法获得每家公司的火灾风险评分,并使用均方误差(MSE)对模型进行评估。最终结果表明,DNN在实验中表现最佳,这对于提升智慧城市建设中消防的智能化和准确性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信