Understanding large network datasets through embodied interaction in virtual reality

Alberto Betella, Enrique Martínez Bueno, Wipawee Kongsantad, R. Zucca, X. Arsiwalla, P. Omedas, P. Verschure
{"title":"Understanding large network datasets through embodied interaction in virtual reality","authors":"Alberto Betella, Enrique Martínez Bueno, Wipawee Kongsantad, R. Zucca, X. Arsiwalla, P. Omedas, P. Verschure","doi":"10.1145/2617841.2620711","DOIUrl":null,"url":null,"abstract":"The intricate web of information we generate nowadays is more massive than ever in the history of mankind. The sheer enormity of big data makes the task of extracting semantic associations out of complex networks more complicated. Stemming this \"data deluge\" calls for novel unprecedented technologies. In this work, we engineered a system that enhances a user's understanding of large datasets through embodied navigation and natural gestures. This system constitutes an immersive virtual reality environment called the \"eXperience Induction Machine\" (XIM). One of the applications that we tested using our system is the exploration of the human connectome: the network of nodes and connections that underlie the anatomical architecture of the human brain. As a comparative validation of our technology, we then exposed participants to a connectome dataset using both our system and a state-of-the-art software for visualization and analysis of the same network. We systematically measured participants' understanding and visual memory of the connectomic structure. Our results showed that participants retained more information about the structure of the network when using our system. Overall, our system constitutes a novel approach in the exploration and understanding of large complex networks.","PeriodicalId":128331,"journal":{"name":"Proceedings of the 2014 Virtual Reality International Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Virtual Reality International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2617841.2620711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The intricate web of information we generate nowadays is more massive than ever in the history of mankind. The sheer enormity of big data makes the task of extracting semantic associations out of complex networks more complicated. Stemming this "data deluge" calls for novel unprecedented technologies. In this work, we engineered a system that enhances a user's understanding of large datasets through embodied navigation and natural gestures. This system constitutes an immersive virtual reality environment called the "eXperience Induction Machine" (XIM). One of the applications that we tested using our system is the exploration of the human connectome: the network of nodes and connections that underlie the anatomical architecture of the human brain. As a comparative validation of our technology, we then exposed participants to a connectome dataset using both our system and a state-of-the-art software for visualization and analysis of the same network. We systematically measured participants' understanding and visual memory of the connectomic structure. Our results showed that participants retained more information about the structure of the network when using our system. Overall, our system constitutes a novel approach in the exploration and understanding of large complex networks.
通过虚拟现实中的具体交互来理解大型网络数据集
我们今天产生的错综复杂的信息网络比人类历史上任何时候都要庞大。庞大的大数据使得从复杂网络中提取语义关联的任务变得更加复杂。遏制这种“数据泛滥”需要前所未有的新技术。在这项工作中,我们设计了一个系统,通过嵌入导航和自然手势来增强用户对大型数据集的理解。该系统构成了一个沉浸式虚拟现实环境,称为“体验感应机”(XIM)。我们使用我们的系统测试的应用之一是探索人类连接组:节点和连接的网络是人类大脑解剖结构的基础。作为对我们技术的比较验证,我们随后使用我们的系统和最先进的软件将参与者暴露于连接体数据集,用于对同一网络进行可视化和分析。我们系统地测量了参与者对连接体结构的理解和视觉记忆。我们的研究结果表明,当使用我们的系统时,参与者保留了更多关于网络结构的信息。总的来说,我们的系统构成了探索和理解大型复杂网络的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信