KCCA feature fusion in universal steganographic detection

Shangping Zhong, Chao Ke
{"title":"KCCA feature fusion in universal steganographic detection","authors":"Shangping Zhong, Chao Ke","doi":"10.1109/MEC.2011.6025986","DOIUrl":null,"url":null,"abstract":"Feature fusion method has improved steganographic detection performance based on classical feature, however there are some drawbacks of this: without analysing the correlation of the basic features, it's only a simple combination of features and lacks standard for features selection; serial fusion feature always has high dimension, which will lead great time cost and possibility of “curse of dimensionality”. In this paper, we proposed a novel framework for measuring the feature selection and fusing two selected feature sets in steganographic detection field, based on KCCA theory. KCCA feature fusion method can outperform single feature and achieve similar performance to serial feature fusion method in steganographic detection field, while only costing 1/10∼1/8 of original time. So it has better practicability.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Feature fusion method has improved steganographic detection performance based on classical feature, however there are some drawbacks of this: without analysing the correlation of the basic features, it's only a simple combination of features and lacks standard for features selection; serial fusion feature always has high dimension, which will lead great time cost and possibility of “curse of dimensionality”. In this paper, we proposed a novel framework for measuring the feature selection and fusing two selected feature sets in steganographic detection field, based on KCCA theory. KCCA feature fusion method can outperform single feature and achieve similar performance to serial feature fusion method in steganographic detection field, while only costing 1/10∼1/8 of original time. So it has better practicability.
KCCA特征融合在通用隐写检测中的应用
特征融合方法在经典特征的基础上提高了隐写检测性能,但存在一些缺点:没有分析基本特征之间的相关性,只是简单的特征组合,缺乏特征选择的标准;序列融合特征通常具有高维数,这将导致巨大的时间成本和“维数诅咒”的可能性。本文提出了一种基于KCCA理论的隐写检测领域特征选择度量和两个特征集融合的新框架。KCCA特征融合方法在隐写检测领域的性能优于单个特征,达到与串行特征融合方法相似的性能,而所需时间仅为原始方法的1/10 ~ 1/8。因此具有较好的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信