R6P - Rolling shutter absolute pose problem

Cenek Albl, Z. Kukelova, T. Pajdla
{"title":"R6P - Rolling shutter absolute pose problem","authors":"Cenek Albl, Z. Kukelova, T. Pajdla","doi":"10.1109/CVPR.2015.7298842","DOIUrl":null,"url":null,"abstract":"We present a minimal, non-iterative solution to the absolute pose problem for images from rolling shutter cameras. Absolute pose problem is a key problem in computer vision and rolling shutter is present in a vast majority of today's digital cameras. We propose several rolling shutter camera models and verify their feasibility for a polynomial solver. A solution based on linearized camera model is chosen and verified in several experiments. We use a linear approximation to the camera orientation, which is meaningful only around the identity rotation. We show that the standard P3P algorithm is able to estimate camera orientation within 6 degrees for camera rotation velocity as high as 30deg/frame. Therefore we can use the standard P3P algorithm to estimate camera orientation and to bring the camera rotation matrix close to the identity. Using this solution, camera position, orientation, translational velocity and angular velocity can be computed using six 2D-to-3D correspondences, with orientation error under half a degree and relative position error under 2%. A significant improvement in terms of the number of inliers in RANSAC is demonstrated.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We present a minimal, non-iterative solution to the absolute pose problem for images from rolling shutter cameras. Absolute pose problem is a key problem in computer vision and rolling shutter is present in a vast majority of today's digital cameras. We propose several rolling shutter camera models and verify their feasibility for a polynomial solver. A solution based on linearized camera model is chosen and verified in several experiments. We use a linear approximation to the camera orientation, which is meaningful only around the identity rotation. We show that the standard P3P algorithm is able to estimate camera orientation within 6 degrees for camera rotation velocity as high as 30deg/frame. Therefore we can use the standard P3P algorithm to estimate camera orientation and to bring the camera rotation matrix close to the identity. Using this solution, camera position, orientation, translational velocity and angular velocity can be computed using six 2D-to-3D correspondences, with orientation error under half a degree and relative position error under 2%. A significant improvement in terms of the number of inliers in RANSAC is demonstrated.
R6P -卷帘门绝对姿势问题
我们提出了一个最小的,非迭代的解决方案,从滚动快门相机的图像的绝对姿态问题。绝对姿态问题是计算机视觉中的一个关键问题,而卷帘式快门在当今绝大多数数码相机中都存在。我们提出了几种卷帘式相机模型,并用多项式求解器验证了它们的可行性。选择了一种基于线性化摄像机模型的解决方案,并进行了实验验证。我们使用相机方向的线性近似,这只在身份旋转周围有意义。我们证明了标准P3P算法能够在相机旋转速度高达30度/帧的情况下在6度内估计相机方向。因此,我们可以使用标准的P3P算法来估计摄像机的方向,并使摄像机的旋转矩阵接近恒等。利用该解决方案,通过6个二维到三维的对应,可以计算出摄像机的位置、方向、平移速度和角速度,方向误差在半度以内,相对位置误差在2%以内。在RANSAC中,内嵌器的数量有了显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信