Visitor Forecasting Wisata Bahari Lamongan (WBL) Using Hybrid Particle Swarm Optimization (PSO) and Seasonal ARIMA

D. Rahmalia
{"title":"Visitor Forecasting Wisata Bahari Lamongan (WBL) Using Hybrid Particle Swarm Optimization (PSO) and\n Seasonal ARIMA","authors":"D. Rahmalia","doi":"10.33005/ijdasea.v1i2.7","DOIUrl":null,"url":null,"abstract":"The revenue of city is determined by some factors, one of them is tourism sector. A problem of tourism\n sector is forecasting visitors Wisata Bahari Lamongan (WBL). Because data of the number of visitors WBL are\n fluctuating and seasonal, then it is required Seasonal ARIMA method. In the Seasonal ARIMA method, there are\n some parameters that should be optimized for producing forecasting with small mean square error (MSE). In\n this research, Seasonal ARIMA parameters will be optimized by Particle Swarm Optimization (PSO). PSO is\n optimization algorithm inspired by behavior of birds group in searching food. Based on simulation results,\n PSO algorithm can optimize Seasonal ARIMA parameter which is optimal and it can produce forecasting result\n with small MSE.","PeriodicalId":220622,"journal":{"name":"Internasional Journal of Data Science, Engineering, and Anaylitics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internasional Journal of Data Science, Engineering, and Anaylitics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33005/ijdasea.v1i2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The revenue of city is determined by some factors, one of them is tourism sector. A problem of tourism sector is forecasting visitors Wisata Bahari Lamongan (WBL). Because data of the number of visitors WBL are fluctuating and seasonal, then it is required Seasonal ARIMA method. In the Seasonal ARIMA method, there are some parameters that should be optimized for producing forecasting with small mean square error (MSE). In this research, Seasonal ARIMA parameters will be optimized by Particle Swarm Optimization (PSO). PSO is optimization algorithm inspired by behavior of birds group in searching food. Based on simulation results, PSO algorithm can optimize Seasonal ARIMA parameter which is optimal and it can produce forecasting result with small MSE.
基于混合粒子群优化(PSO)和季节ARIMA的WBL游客预测
城市的收入是由许多因素决定的,其中一个因素就是旅游业。旅游业面临的一个问题是预测游客数量。由于游客WBL数据具有波动性和季节性,因此需要采用季节性ARIMA方法。在季节性ARIMA方法中,为了获得较小均方误差(MSE)的预测结果,需要对一些参数进行优化。本研究将采用粒子群算法(PSO)对季节ARIMA参数进行优化。粒子群优化算法是一种受鸟类群体觅食行为启发的优化算法。仿真结果表明,粒子群算法能优化出最优的季节ARIMA参数,并能得到最小均方差的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信