A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida, J. Koga
{"title":"Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique","authors":"A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida, J. Koga","doi":"10.1109/VLSIT.2004.1345459","DOIUrl":null,"url":null,"abstract":"A novel approach for achieving high-performance Schottky-source/drain MOSFETs (SBTs: Schottky Barrier Transistors) is proposed. The dopant segregation (DS) technique is employed and significant modulation of Schottky barrier height is demonstrated. The DS-SBT fabricated with the current CoSi/sub 2/ process show competitive drive current and better short-channel-effect immunity compared to the conventional MOSFET. In conclusion the DS-Schottky junction is useful for the source/drain of advanced MOSFETs.","PeriodicalId":297052,"journal":{"name":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2004.1345459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129
Abstract
A novel approach for achieving high-performance Schottky-source/drain MOSFETs (SBTs: Schottky Barrier Transistors) is proposed. The dopant segregation (DS) technique is employed and significant modulation of Schottky barrier height is demonstrated. The DS-SBT fabricated with the current CoSi/sub 2/ process show competitive drive current and better short-channel-effect immunity compared to the conventional MOSFET. In conclusion the DS-Schottky junction is useful for the source/drain of advanced MOSFETs.