Xincheng Shen, Y. Qu, Shaoxiong Huang, Zhi Li, Kaifeng Zhang
{"title":"Wind Speed Data Repairing Method Based on Bidirectional Prediction","authors":"Xincheng Shen, Y. Qu, Shaoxiong Huang, Zhi Li, Kaifeng Zhang","doi":"10.1109/ICPECA51329.2021.9362540","DOIUrl":null,"url":null,"abstract":"In order to repair the lost data in distributed wind power system, this paper puts forward a wind speed data repairing model based on a new bidirectional prediction method. This model consists of two one-way prediction models. In each prediction model, the original wind speed data are decomposed into several intrinsic mode functions (IMFs) and a residue signal by ensemble empirical mode decomposition (EEMD) method. Then the Savitzky–Golay (SG) filter is used to reduce noise for high-frequency IMFs. Next the long short-term memory (LSTM) model and autoregressive integrated moving average (ARIMA) model are combined to predict low-frequency IMFs and the noise reduction results respectively. At the end, all those forecast results are added and form a one-way result. By weighted average of two one -way results, the repairing result is calculated. The experimental results from multiple prediction cases show that this method can get more accurate results.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to repair the lost data in distributed wind power system, this paper puts forward a wind speed data repairing model based on a new bidirectional prediction method. This model consists of two one-way prediction models. In each prediction model, the original wind speed data are decomposed into several intrinsic mode functions (IMFs) and a residue signal by ensemble empirical mode decomposition (EEMD) method. Then the Savitzky–Golay (SG) filter is used to reduce noise for high-frequency IMFs. Next the long short-term memory (LSTM) model and autoregressive integrated moving average (ARIMA) model are combined to predict low-frequency IMFs and the noise reduction results respectively. At the end, all those forecast results are added and form a one-way result. By weighted average of two one -way results, the repairing result is calculated. The experimental results from multiple prediction cases show that this method can get more accurate results.