Wind Speed Data Repairing Method Based on Bidirectional Prediction

Xincheng Shen, Y. Qu, Shaoxiong Huang, Zhi Li, Kaifeng Zhang
{"title":"Wind Speed Data Repairing Method Based on Bidirectional Prediction","authors":"Xincheng Shen, Y. Qu, Shaoxiong Huang, Zhi Li, Kaifeng Zhang","doi":"10.1109/ICPECA51329.2021.9362540","DOIUrl":null,"url":null,"abstract":"In order to repair the lost data in distributed wind power system, this paper puts forward a wind speed data repairing model based on a new bidirectional prediction method. This model consists of two one-way prediction models. In each prediction model, the original wind speed data are decomposed into several intrinsic mode functions (IMFs) and a residue signal by ensemble empirical mode decomposition (EEMD) method. Then the Savitzky–Golay (SG) filter is used to reduce noise for high-frequency IMFs. Next the long short-term memory (LSTM) model and autoregressive integrated moving average (ARIMA) model are combined to predict low-frequency IMFs and the noise reduction results respectively. At the end, all those forecast results are added and form a one-way result. By weighted average of two one -way results, the repairing result is calculated. The experimental results from multiple prediction cases show that this method can get more accurate results.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to repair the lost data in distributed wind power system, this paper puts forward a wind speed data repairing model based on a new bidirectional prediction method. This model consists of two one-way prediction models. In each prediction model, the original wind speed data are decomposed into several intrinsic mode functions (IMFs) and a residue signal by ensemble empirical mode decomposition (EEMD) method. Then the Savitzky–Golay (SG) filter is used to reduce noise for high-frequency IMFs. Next the long short-term memory (LSTM) model and autoregressive integrated moving average (ARIMA) model are combined to predict low-frequency IMFs and the noise reduction results respectively. At the end, all those forecast results are added and form a one-way result. By weighted average of two one -way results, the repairing result is calculated. The experimental results from multiple prediction cases show that this method can get more accurate results.
基于双向预测的风速数据修复方法
为了修复分布式风电系统中丢失的数据,本文提出了一种基于新型双向预测方法的风速数据修复模型。该模型由两个单向预测模型组成。在每个预测模型中,将原始风速数据通过集合经验模态分解(EEMD)方法分解为多个本征模态函数(IMFs)和一个残差信号。然后采用Savitzky-Golay (SG)滤波器对高频imf进行降噪。然后结合长短期记忆(LSTM)模型和自回归积分移动平均(ARIMA)模型分别预测低频imf和降噪结果。最后,将所有这些预测结果相加,形成一个单向结果。对两个单向结果进行加权平均,计算修复结果。多个预测实例的实验结果表明,该方法可以得到更准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信