Saurav Muralidharan, Manu Shantharam, Mary W. Hall, M. Garland, Bryan Catanzaro
{"title":"Nitro: A Framework for Adaptive Code Variant Tuning","authors":"Saurav Muralidharan, Manu Shantharam, Mary W. Hall, M. Garland, Bryan Catanzaro","doi":"10.1109/IPDPS.2014.59","DOIUrl":null,"url":null,"abstract":"Autotuning systems intelligently navigate a search space of possible implementations of a computation to find the implementation(s) that best meets a specific optimization criteria, usually performance. This paper describes Nitro, a programmer-directed auto tuning framework that facilitates tuning of code variants, or alternative implementations of the same computation. Nitro provides a library interface that permits programmers to express code variants along with meta-information that aids the system in selecting among the set of variants at run time. Machine learning is employed to build a model through training on this meta-information, so that when a new input is presented, Nitro can consult the model to select the appropriate variant. In experiments with five real-world irregular GPU benchmarks from sparse numerical methods, graph computations and sorting, Nitro-tuned variants achieve over 93% of the performance of variants selected through exhaustive search. Further, we describe optimizations and heuristics in Nitro that substantially reduce training time and other overheads.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
Autotuning systems intelligently navigate a search space of possible implementations of a computation to find the implementation(s) that best meets a specific optimization criteria, usually performance. This paper describes Nitro, a programmer-directed auto tuning framework that facilitates tuning of code variants, or alternative implementations of the same computation. Nitro provides a library interface that permits programmers to express code variants along with meta-information that aids the system in selecting among the set of variants at run time. Machine learning is employed to build a model through training on this meta-information, so that when a new input is presented, Nitro can consult the model to select the appropriate variant. In experiments with five real-world irregular GPU benchmarks from sparse numerical methods, graph computations and sorting, Nitro-tuned variants achieve over 93% of the performance of variants selected through exhaustive search. Further, we describe optimizations and heuristics in Nitro that substantially reduce training time and other overheads.