Neural network fusion and inversion model for NDIR sensor measurement

S. Cięszczyk, P. Komada
{"title":"Neural network fusion and inversion model for NDIR sensor measurement","authors":"S. Cięszczyk, P. Komada","doi":"10.1117/12.2220064","DOIUrl":null,"url":null,"abstract":"This article presents the problem of the impact of environmental disturbances on the determination of information from measurements. As an example, NDIR sensor is studied, which can measure industrial or environmental gases of varying temperature. The issue of changes of influence quantities value appears in many industrial measurements. Developing of appropriate algorithms resistant to conditions changes is key problem. In the resulting mathematical model of inverse problem additional input variables appears. Due to the difficulties in the mathematical description of inverse model neural networks have been applied. They do not require initial assumptions about the structure of the created model. They provide correction of sensor non-linearity as well as correction of influence of interfering quantity. The analyzed issue requires additional measurement of disturbing quantity and its connection with measurement of primary quantity. Combining this information with the use of neural networks belongs to the class of sensor fusion algorithm.","PeriodicalId":299297,"journal":{"name":"Optical Fibers and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fibers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2220064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents the problem of the impact of environmental disturbances on the determination of information from measurements. As an example, NDIR sensor is studied, which can measure industrial or environmental gases of varying temperature. The issue of changes of influence quantities value appears in many industrial measurements. Developing of appropriate algorithms resistant to conditions changes is key problem. In the resulting mathematical model of inverse problem additional input variables appears. Due to the difficulties in the mathematical description of inverse model neural networks have been applied. They do not require initial assumptions about the structure of the created model. They provide correction of sensor non-linearity as well as correction of influence of interfering quantity. The analyzed issue requires additional measurement of disturbing quantity and its connection with measurement of primary quantity. Combining this information with the use of neural networks belongs to the class of sensor fusion algorithm.
NDIR传感器测量的神经网络融合与反演模型
本文提出了环境干扰对测量信息测定的影响问题。以NDIR传感器为例进行了研究,该传感器可以测量工业或环境中的变温气体。在许多工业测量中都出现了影响量值变化的问题。开发适合条件变化的算法是关键问题。在得到的反问题数学模型中,出现了附加的输入变量。由于数学描述的困难,反模型神经网络得到了应用。它们不需要对所创建模型的结构进行初始假设。对传感器的非线性进行校正,并对干扰量的影响进行校正。所分析的问题需要附加扰动量的测量及其与原量测量的联系。将这些信息与神经网络相结合,属于传感器融合算法的范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信