Research on Remote Sensing Image Classification Algorithm Based on EfficientNet

Hang Yin, Cheng Yang, Jiayi Lu
{"title":"Research on Remote Sensing Image Classification Algorithm Based on EfficientNet","authors":"Hang Yin, Cheng Yang, Jiayi Lu","doi":"10.1109/ICSP54964.2022.9778437","DOIUrl":null,"url":null,"abstract":"Accurate classification of remote sensing images is important in remote sensing applications. In order to verify the efficiency and accuracy of efficientnet algorithm in remote sensing image classification, this paper classifies the UCMerced LandUse dataset based on EfficientNet. The experimental results show that compared with VGGNet, ResNet and MobileNet, the EfficientNet network introduces composite parameters and scales depth, width and resolution at the same time. The accuracy of EfficientV2-s in the verification set is 16.5%, 5.2%, 1.8% and 1.7% higher than that of VGG, MobileNetV2, ResNet34 and EfficientNet-b0, which shows the efficiency and accuracy of EfficientNet network in remote sensing image classification data set.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate classification of remote sensing images is important in remote sensing applications. In order to verify the efficiency and accuracy of efficientnet algorithm in remote sensing image classification, this paper classifies the UCMerced LandUse dataset based on EfficientNet. The experimental results show that compared with VGGNet, ResNet and MobileNet, the EfficientNet network introduces composite parameters and scales depth, width and resolution at the same time. The accuracy of EfficientV2-s in the verification set is 16.5%, 5.2%, 1.8% and 1.7% higher than that of VGG, MobileNetV2, ResNet34 and EfficientNet-b0, which shows the efficiency and accuracy of EfficientNet network in remote sensing image classification data set.
基于effentnet的遥感图像分类算法研究
遥感影像的准确分类在遥感应用中具有重要意义。为了验证efficientnet算法在遥感影像分类中的效率和准确性,本文基于efficientnet对UCMerced LandUse数据集进行了分类。实验结果表明,与VGGNet、ResNet和MobileNet相比,effentnet网络引入了复合参数,同时对深度、宽度和分辨率进行了缩放。验证集中的EfficientV2-s的准确率比VGG、MobileNetV2、ResNet34和EfficientNet-b0分别高出16.5%、5.2%、1.8%和1.7%,显示了EfficientNet网络在遥感图像分类数据集中的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信