Ensemble classification of PolSAR data using multi-objective heuristic combination rule

R. Saleh, H. Farsi, Seyyed Hamid Zahiri
{"title":"Ensemble classification of PolSAR data using multi-objective heuristic combination rule","authors":"R. Saleh, H. Farsi, Seyyed Hamid Zahiri","doi":"10.1109/CSIEC.2016.7482132","DOIUrl":null,"url":null,"abstract":"Polarimetric synthetic aperture radar (PolSAR) system provides a day-or-night, all-weather means of remote sensing and produces high-resolution images. The use of these images for terrain classification is of interest to researchers. On the other hand according to recent research results, ensemble of classifiers as an effective approach has more capabilities to single-classifiers. So an optimum ensemble of classifier using multiple objective particle swarm optimization (MOPSO) and considering accuracy and reliability as objective functions is proposed. A sparse representation-based classifier and other diverse single-classifiers are used as base classifiers. The experiments over a benchmark PolSAR image demonstrate the effectiveness of the proposed algorithms over the existing techniques.","PeriodicalId":268101,"journal":{"name":"2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"361 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2016.7482132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Polarimetric synthetic aperture radar (PolSAR) system provides a day-or-night, all-weather means of remote sensing and produces high-resolution images. The use of these images for terrain classification is of interest to researchers. On the other hand according to recent research results, ensemble of classifiers as an effective approach has more capabilities to single-classifiers. So an optimum ensemble of classifier using multiple objective particle swarm optimization (MOPSO) and considering accuracy and reliability as objective functions is proposed. A sparse representation-based classifier and other diverse single-classifiers are used as base classifiers. The experiments over a benchmark PolSAR image demonstrate the effectiveness of the proposed algorithms over the existing techniques.
基于多目标启发式组合规则的PolSAR数据集成分类
偏振合成孔径雷达(PolSAR)系统提供昼夜、全天候的遥感手段,并产生高分辨率图像。研究人员对使用这些图像进行地形分类很感兴趣。另一方面,根据近年来的研究结果,集成分类器作为一种有效的方法,具有比单一分类器更强的能力。为此,提出了一种以精度和可靠性为目标函数,采用多目标粒子群算法的分类器优化集成方法。基于稀疏表示的分类器和其他不同的单一分类器被用作基分类器。在一幅基准PolSAR图像上的实验证明了所提算法相对于现有技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信