An Online and Flexible Multi-object Tracking Framework Using Long Short-Term Memory

Xingyu Wan, Jinjun Wang, Sanping Zhou
{"title":"An Online and Flexible Multi-object Tracking Framework Using Long Short-Term Memory","authors":"Xingyu Wan, Jinjun Wang, Sanping Zhou","doi":"10.1109/CVPRW.2018.00169","DOIUrl":null,"url":null,"abstract":"The capacity to model temporal dependency by Recurrent Neural Networks (RNNs) makes it a plausible selection for the multi-object tracking (MOT) problem. Due to the non-linear transformations and the unique memory mechanism, Long Short-Term Memory (LSTM) can consider a window of history when learning discriminative features, which suggests that the LSTM is suitable for state estimation of target objects as they move around. This paper focuses on association based MOT, and we propose a novel Siamese LSTM Network to interpret both temporal and spatial components nonlinearly by learning the feature of trajectories, and outputs the similarity score of two trajectories for data association. In addition, we also introduce an online metric learning scheme to update the state estimation of each trajectory dynamically. Experimental evaluation on MOT16 benchmark shows that the proposed method achieves competitive performance compared with other state-of-the-art works.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The capacity to model temporal dependency by Recurrent Neural Networks (RNNs) makes it a plausible selection for the multi-object tracking (MOT) problem. Due to the non-linear transformations and the unique memory mechanism, Long Short-Term Memory (LSTM) can consider a window of history when learning discriminative features, which suggests that the LSTM is suitable for state estimation of target objects as they move around. This paper focuses on association based MOT, and we propose a novel Siamese LSTM Network to interpret both temporal and spatial components nonlinearly by learning the feature of trajectories, and outputs the similarity score of two trajectories for data association. In addition, we also introduce an online metric learning scheme to update the state estimation of each trajectory dynamically. Experimental evaluation on MOT16 benchmark shows that the proposed method achieves competitive performance compared with other state-of-the-art works.
一种基于长短期记忆的在线灵活多目标跟踪框架
递归神经网络(RNNs)对时间依赖性建模的能力使其成为多目标跟踪(MOT)问题的合理选择。由于非线性变换和独特的记忆机制,长短期记忆(LSTM)在学习判别特征时可以考虑历史窗口,这表明LSTM适用于目标物体在运动过程中的状态估计。本文主要研究基于关联的MOT,提出了一种新的Siamese LSTM网络,通过学习轨迹特征对时间和空间成分进行非线性解释,并输出两个轨迹的相似度得分进行数据关联。此外,我们还引入了一种在线度量学习方案来动态更新每条轨迹的状态估计。在MOT16基准测试上的实验评估表明,该方法与其他研究成果相比具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信