TUE at SemEval-2020 Task 1: Detecting Semantic Change by Clustering Contextual Word Embeddings

Anna Karnysheva, Pia Schwarz
{"title":"TUE at SemEval-2020 Task 1: Detecting Semantic Change by Clustering Contextual Word Embeddings","authors":"Anna Karnysheva, Pia Schwarz","doi":"10.18653/v1/2020.semeval-1.28","DOIUrl":null,"url":null,"abstract":"This paper describes our system for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. Target words of corpora from two different time periods are classified according to their semantic change. The languages covered are English, German, Latin, and Swedish. Our approach involves clustering ELMo embeddings using DBSCAN and K-means. For a more fine grained detection of semantic change we take the Jensen-Shannon Distance metric and rank the target words from strongest to weakest change. The results show that this is a valid approach for the classification subtask where we rank 13th out of 33 groups with an accuracy score of 61.2%. For the ranking subtask we score a Spearman’s rank-order correlation coefficient of 0.087 which places us on rank 29.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.semeval-1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes our system for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. Target words of corpora from two different time periods are classified according to their semantic change. The languages covered are English, German, Latin, and Swedish. Our approach involves clustering ELMo embeddings using DBSCAN and K-means. For a more fine grained detection of semantic change we take the Jensen-Shannon Distance metric and rank the target words from strongest to weakest change. The results show that this is a valid approach for the classification subtask where we rank 13th out of 33 groups with an accuracy score of 61.2%. For the ranking subtask we score a Spearman’s rank-order correlation coefficient of 0.087 which places us on rank 29.
任务1:通过聚类上下文词嵌入检测语义变化
本文描述了SemEval 2020任务1的系统:无监督词汇语义变化检测。根据语料库中两个不同时期的目标词的语义变化进行分类。涵盖的语言有英语、德语、拉丁语和瑞典语。我们的方法包括使用DBSCAN和K-means对ELMo嵌入进行聚类。为了更细粒度地检测语义变化,我们采用Jensen-Shannon距离度量,并将目标单词从最强变化到最弱变化排序。结果表明,这是一种有效的分类子任务方法,我们在33组中排名第13位,准确率为61.2%。对于排名子任务,我们的Spearman秩序相关系数为0.087,这使我们排名第29位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信