Syzygies of projective varieties of large degree: Recent progress and open problems

L. Ein, R. Lazarsfeld
{"title":"Syzygies of projective varieties of large\n degree: Recent progress and open problems","authors":"L. Ein, R. Lazarsfeld","doi":"10.1090/PSPUM/097.1/01674","DOIUrl":null,"url":null,"abstract":"This paper is a survey of recent work on the asymptotic behavior of the syzygies of a smooth complex projective variety as the positivity of the embedding line bundle grows. \nAfter a quick overview of results from the 1980s and 1990s concerning the linearity of the first few terms of a resolution, we discuss a non-vanishing theorem to the effect that from an asymptotic viewpoint, essentially all of the syzygy modules that could be non-zero are in fact non-zero. We explain the quick new proof of this result in the case of Veronese varieties due to Erman and authors, and we explore some results and conjectures about the asymptotics of Betti numbers. Finally we discuss the case of syzygies of weight one, and the gonality conjecture on the syzygies of curves of large degree. \nThe exposition also discusses numerous open questions and conjectures.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.1/01674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is a survey of recent work on the asymptotic behavior of the syzygies of a smooth complex projective variety as the positivity of the embedding line bundle grows. After a quick overview of results from the 1980s and 1990s concerning the linearity of the first few terms of a resolution, we discuss a non-vanishing theorem to the effect that from an asymptotic viewpoint, essentially all of the syzygy modules that could be non-zero are in fact non-zero. We explain the quick new proof of this result in the case of Veronese varieties due to Erman and authors, and we explore some results and conjectures about the asymptotics of Betti numbers. Finally we discuss the case of syzygies of weight one, and the gonality conjecture on the syzygies of curves of large degree. The exposition also discusses numerous open questions and conjectures.
大度投影变异的协同:最新进展及有待解决的问题
本文综述了近年来关于光滑复射影变数随嵌入线束正性增长的合子渐近性的研究。在快速概述了20世纪80年代和90年代关于分辨率前几项线性的结果之后,我们讨论了一个非消失定理,从渐近的观点来看,基本上所有可能为非零的合模实际上都是非零的。我们解释了Erman等人对Veronese变分的快速新证明,并探讨了Betti数渐近性的一些结果和猜想。最后讨论了权值为1的合集的情况,以及大次曲线合集的共向性猜想。文章还讨论了许多悬而未决的问题和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信