Non-Destructive Evaluation of Food and Beverage (F&B) Fast Moving Consumer Goods (FMCG) Using Capacitive Proximity Sensor

Hari Krishna Salila Vijayalal Mohan, A. Malcolm
{"title":"Non-Destructive Evaluation of Food and Beverage (F&B) Fast Moving Consumer Goods (FMCG) Using Capacitive Proximity Sensor","authors":"Hari Krishna Salila Vijayalal Mohan, A. Malcolm","doi":"10.1109/SAS51076.2021.9530158","DOIUrl":null,"url":null,"abstract":"In a high-volume food and beverage production environment, non-destructive and real-time inspection of various stages of food production from raw content processing to product packaging at high speed is a challenge. Specifically, filling and dispensing, packaging, and sealing lines encounter issues such as powder caking, non-homogenous powder composition, misaligned caps, and leaks during package sealing, which are currently addressed using human inspection and/or destructive, expensive and offline screening methodologies. In this work, a non-destructive evaluation platform using a capacitive proximity sensor was proposed and demonstrated to showcase novel applications such as monitoring powder caking, non-invasive powder composition analysis, contactless capping closure integrity testing and non-contact leak detection in sachet seals with high throughput, in-line integration capability and a small system footprint.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a high-volume food and beverage production environment, non-destructive and real-time inspection of various stages of food production from raw content processing to product packaging at high speed is a challenge. Specifically, filling and dispensing, packaging, and sealing lines encounter issues such as powder caking, non-homogenous powder composition, misaligned caps, and leaks during package sealing, which are currently addressed using human inspection and/or destructive, expensive and offline screening methodologies. In this work, a non-destructive evaluation platform using a capacitive proximity sensor was proposed and demonstrated to showcase novel applications such as monitoring powder caking, non-invasive powder composition analysis, contactless capping closure integrity testing and non-contact leak detection in sachet seals with high throughput, in-line integration capability and a small system footprint.
使用电容式接近传感器无损评价食品和饮料(F&B)快速消费品(FMCG)
在大批量的食品和饮料生产环境中,从原料加工到产品包装的食品生产各个阶段的高速无损和实时检测是一项挑战。具体来说,灌装和分配、包装和密封线会遇到粉末结块、不均匀粉末成分、不对准的瓶盖和包装密封过程中的泄漏等问题,目前使用人工检查和/或破坏性的、昂贵的离线筛选方法来解决这些问题。在这项工作中,提出并演示了使用电容式接近传感器的非破坏性评估平台,以展示新应用,如监测粉末结块,非侵入性粉末成分分析,非接触式封盖完整性测试和非接触式泄漏检测,具有高通量,在线集成能力和小系统占地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信