{"title":"An architecture of neural networks for input vectors of fuzzy numbers","authors":"H. Ishibuchi, Ryosuke Fujioka, Hideo Tanaka","doi":"10.1109/FUZZY.1992.258597","DOIUrl":null,"url":null,"abstract":"The authors proposed an architecture of multilayer feedforward neural networks for classification problems of fuzzy vectors. A fuzzy input vector is mapped to a fuzzy number by the proposed neural network where the activation function is extended to a fuzzy input-output relation by the extension principle. A learning algorithm is derived from a cost function defined by a target output and the level set of a fuzzy output. The proposed classification method of fuzzy vectors is illustrated by a numerical example.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
The authors proposed an architecture of multilayer feedforward neural networks for classification problems of fuzzy vectors. A fuzzy input vector is mapped to a fuzzy number by the proposed neural network where the activation function is extended to a fuzzy input-output relation by the extension principle. A learning algorithm is derived from a cost function defined by a target output and the level set of a fuzzy output. The proposed classification method of fuzzy vectors is illustrated by a numerical example.<>