Optical simulation of laser beam phase-shaping focusing optimization in biological tissues

Ricardo Gomes, P. Vieira, J. Coelho
{"title":"Optical simulation of laser beam phase-shaping focusing optimization in biological tissues","authors":"Ricardo Gomes, P. Vieira, J. Coelho","doi":"10.1117/12.2026238","DOIUrl":null,"url":null,"abstract":"In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam’s propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software’s proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.","PeriodicalId":135913,"journal":{"name":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2026238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam’s propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software’s proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.
生物组织中激光束相位整形聚焦优化的光学模拟
在本文中,我们报告了一种光学模拟器的开发,该模拟器可用于通过相位整形方法补偿/减少大多数生物组织的光散射效应。事实上,由于人体中大多数生物介质的浑浊性质,散射长期以来一直是激光医学应用的主要限制。在开发模拟器时,采用了两种不同的方法:一种是使用多个相同的光束指向相同的目标区域,另一种是使用相位形光束。在多重相同光束方法中(主要用于说明散射对光束传播的限制作用),与单光束布局相比,1mm处的光束聚焦没有改善,但在相位形光束方法中,在相同深度处的光束半径提高了8倍。利用光学设计软件Zemax和Matlab编程语言创建的数值算法对光束波前进行建模。专用工具箱允许两个程序之间的通信。事实证明,使用这两种软件是一种简单而强大的解决方案,结合了两者的优点,并允许将模拟适应新系统的巨大潜力,从而允许在实验室实施之前评估其响应并定义关键工程参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信