ASR Error Correction with Dual-Channel Self-Supervised Learning

Fan Zhang, Mei Tu, Song Liu, Jinyao Yan
{"title":"ASR Error Correction with Dual-Channel Self-Supervised Learning","authors":"Fan Zhang, Mei Tu, Song Liu, Jinyao Yan","doi":"10.1109/icassp43922.2022.9746763","DOIUrl":null,"url":null,"abstract":"To improve the performance of Automatic Speech Recognition (ASR), it is common to deploy an error correction module at the post-processing stage to correct recognition errors. In this paper, we propose 1) an error correction model, which takes account of both contextual information and phonetic information by dual-channel; 2) a self-supervised learning method for the model. Firstly, an error region detection model is used to detect the error regions of ASR output. Then, we perform dual-channel feature extraction for the error regions, where one channel extracts their contextual information with a pre-trained language model, while the other channel builds their phonetic information. At the training stage, we construct error patterns at the phoneme level, which simplifies the data annotation procedure, thus allowing us to leverage a large scale of unlabeled data to train our model in a self-supervised learning manner. Experimental results on different test sets demonstrate the effectiveness and robustness of our model.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To improve the performance of Automatic Speech Recognition (ASR), it is common to deploy an error correction module at the post-processing stage to correct recognition errors. In this paper, we propose 1) an error correction model, which takes account of both contextual information and phonetic information by dual-channel; 2) a self-supervised learning method for the model. Firstly, an error region detection model is used to detect the error regions of ASR output. Then, we perform dual-channel feature extraction for the error regions, where one channel extracts their contextual information with a pre-trained language model, while the other channel builds their phonetic information. At the training stage, we construct error patterns at the phoneme level, which simplifies the data annotation procedure, thus allowing us to leverage a large scale of unlabeled data to train our model in a self-supervised learning manner. Experimental results on different test sets demonstrate the effectiveness and robustness of our model.
基于双通道自监督学习的ASR纠错
为了提高自动语音识别(ASR)的性能,通常在后处理阶段部署纠错模块来纠正识别错误。在本文中,我们提出了1)一种双通道同时考虑上下文信息和语音信息的纠错模型;2)模型的自监督学习方法。首先,采用误差区域检测模型对ASR输出的误差区域进行检测。然后,我们对错误区域进行双通道特征提取,其中一个通道使用预训练的语言模型提取其上下文信息,而另一个通道构建其语音信息。在训练阶段,我们在音素层面构建错误模式,这简化了数据标注过程,从而使我们能够利用大量未标记数据以自监督学习的方式训练我们的模型。在不同测试集上的实验结果证明了该模型的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信