Distributed collaborative parameter estimation based on bias compensation

Shuo Wang, L. Jia, Chao-Ping Dou
{"title":"Distributed collaborative parameter estimation based on bias compensation","authors":"Shuo Wang, L. Jia, Chao-Ping Dou","doi":"10.1109/SOLI.2014.6960707","DOIUrl":null,"url":null,"abstract":"This paper presents the study of the problem of distributed parameter estimation by bias compensated recursive least squares (BCRLS) algorithm over adaptive networks. The nodes in the distributed network have a common objective to estimate parameter vector in a collaborative strategy. Traditional recursive least squares (RLS) estimator is biased in case that both the regressor and the output response are corrupted by stationary additive noise. A real-time estimation algorithm of noise variance is proposed, which nodes get the estimation of objective parameter bias. Based on collaborative strategy, we propose a diffusion bias compensated recursive least-squares algorithm. Simulation results show that the BCRLS algorithm has better estimation accuracy than traditional RLS algorithm, and compared with the local estimators, the diffusion BCRLS algorithm has lower mean square error (MSE).","PeriodicalId":191638,"journal":{"name":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2014.6960707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the study of the problem of distributed parameter estimation by bias compensated recursive least squares (BCRLS) algorithm over adaptive networks. The nodes in the distributed network have a common objective to estimate parameter vector in a collaborative strategy. Traditional recursive least squares (RLS) estimator is biased in case that both the regressor and the output response are corrupted by stationary additive noise. A real-time estimation algorithm of noise variance is proposed, which nodes get the estimation of objective parameter bias. Based on collaborative strategy, we propose a diffusion bias compensated recursive least-squares algorithm. Simulation results show that the BCRLS algorithm has better estimation accuracy than traditional RLS algorithm, and compared with the local estimators, the diffusion BCRLS algorithm has lower mean square error (MSE).
基于偏差补偿的分布式协同参数估计
本文研究了自适应网络中基于偏差补偿的递归最小二乘(BCRLS)算法的分布参数估计问题。分布式网络中的节点有一个共同的目标,即在协同策略中估计参数向量。传统的递归最小二乘估计在回归量和输出响应都被平稳的加性噪声破坏的情况下是有偏的。提出了一种实时噪声方差估计算法,该算法使节点得到客观参数偏差的估计。基于协作策略,提出了一种补偿扩散偏差的递归最小二乘算法。仿真结果表明,BCRLS算法比传统的RLS算法具有更好的估计精度,并且与局部估计器相比,扩散BCRLS算法具有更低的均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信