{"title":"Efficient Multi-Function Data Sharing and Searching Mechanism for Cloud-Based Encrypted Data","authors":"K. Liang, Chunhua Su, Jiageng Chen, Joseph K. Liu","doi":"10.1145/2897845.2897865","DOIUrl":null,"url":null,"abstract":"Outsourcing a huge amount of local data to remote cloud servers that has been become a significant trend for industries. Leveraging the considerable cloud storage space, industries can also put forward the outsourced data to cloud computing. How to collect the data for computing without loss of privacy and confidentiality is one of the crucial security problems. Searchable encryption technique has been proposed to protect the confidentiality of the outsourced data and the privacy of the corresponding data query. This technique, however, only supporting search functionality, may not be fully applicable to real-world cloud computing scenario whereby secure data search, share as well as computation are needed. This work presents a novel encrypted cloud-based data share and search system without loss of user privacy and data confidentiality. The new system enables users to make conjunctive keyword query over encrypted data, but also allows encrypted data to be efficiently and multiply shared among different users without the need of the \"download-decrypt-then-encrypt\" mode. As of independent interest, our system provides secure keyword update, so that users can freely and securely update data's keyword field. It is worth mentioning that all the above functionalities do not incur any expansion of ciphertext size, namely, the size of ciphertext remains constant during being searched, shared and keyword-updated. The system is proven secure and meanwhile, the efficiency analysis shows its great potential in being used in large-scale database.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Outsourcing a huge amount of local data to remote cloud servers that has been become a significant trend for industries. Leveraging the considerable cloud storage space, industries can also put forward the outsourced data to cloud computing. How to collect the data for computing without loss of privacy and confidentiality is one of the crucial security problems. Searchable encryption technique has been proposed to protect the confidentiality of the outsourced data and the privacy of the corresponding data query. This technique, however, only supporting search functionality, may not be fully applicable to real-world cloud computing scenario whereby secure data search, share as well as computation are needed. This work presents a novel encrypted cloud-based data share and search system without loss of user privacy and data confidentiality. The new system enables users to make conjunctive keyword query over encrypted data, but also allows encrypted data to be efficiently and multiply shared among different users without the need of the "download-decrypt-then-encrypt" mode. As of independent interest, our system provides secure keyword update, so that users can freely and securely update data's keyword field. It is worth mentioning that all the above functionalities do not incur any expansion of ciphertext size, namely, the size of ciphertext remains constant during being searched, shared and keyword-updated. The system is proven secure and meanwhile, the efficiency analysis shows its great potential in being used in large-scale database.