Model-independent determination of the cosmic growth factor

S. Haude, Shabnam Salehi, Sof'ia Vidal, M. Maturi, Matthias Bartelmann Theoretical Astrophysics, Zah, H. University, T. Physics
{"title":"Model-independent determination of the cosmic growth factor","authors":"S. Haude, Shabnam Salehi, Sof'ia Vidal, M. Maturi, Matthias Bartelmann Theoretical Astrophysics, Zah, H. University, T. Physics","doi":"10.21468/scipostastro.2.1.001","DOIUrl":null,"url":null,"abstract":"The two most important functions describing the evolution of the\nuniverse and its structures are the expansion function\nE(a)E(a)\nand the linear growth factor D_+(a)D+(a).\nIt is desirable to constrain them based on a minimum of assumptions in\norder to avoid biases from assumed cosmological models. The expansion\nfunction has been determined in previous papers in a model-independent\nway using distance moduli to type-Ia supernovae and assuming only a\nmetric theory of gravity, spatial isotropy and homogeneity. Here, we\nextend this analysis in three ways: (1) We enlarge the data sample by\ncombining measurements of type-Ia supernovae with measurements of\nbaryonic acoustic oscillations; (2) we substantially simplify and\ngeneralise our method for reconstructing the expansion function; and (3)\nwe use the reconstructed expansion function to determine the linear\ngrowth factor of cosmic structures, equally independent of specific\nassumptions on an underlying cosmological model other than the usual\nspatial symmetries. In this approach, the present-day matter-density\nparameter \\Omega_\\mathrm{m0}Ωm0\nis the only relevant parameter for an otherwise purely empirical and\naccurate determination of the growth factor. We further show how our\nmethod can be used to derive a possible time evolution of the dark\nenergy as well as the growth index directly from distance measurements.\nDeviations from \\LambdaΛCDM\nthat we see in some of our results may be due to possibly insufficient\nflexibility of our method that could be cured by larger data samples, a\nreal departure from \\LambdaΛCDM\nat a\\lesssim0.3a≲0.3,\nor hidden systematics in the data. The latter could be a matter of\nconcern for all type-Ia supernovae analyses based on\n\\LambdaΛCDM\nfitting approaches, especially in view of the current dispute on the\nvalue of H_0H0.\nThese results illustrate the applicability of our approach as a\ndiagnostic tool.","PeriodicalId":194640,"journal":{"name":"SciPost Astronomy","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/scipostastro.2.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The two most important functions describing the evolution of the universe and its structures are the expansion function E(a)E(a) and the linear growth factor D_+(a)D+(a). It is desirable to constrain them based on a minimum of assumptions in order to avoid biases from assumed cosmological models. The expansion function has been determined in previous papers in a model-independent way using distance moduli to type-Ia supernovae and assuming only a metric theory of gravity, spatial isotropy and homogeneity. Here, we extend this analysis in three ways: (1) We enlarge the data sample by combining measurements of type-Ia supernovae with measurements of baryonic acoustic oscillations; (2) we substantially simplify and generalise our method for reconstructing the expansion function; and (3) we use the reconstructed expansion function to determine the linear growth factor of cosmic structures, equally independent of specific assumptions on an underlying cosmological model other than the usual spatial symmetries. In this approach, the present-day matter-density parameter \Omega_\mathrm{m0}Ωm0 is the only relevant parameter for an otherwise purely empirical and accurate determination of the growth factor. We further show how our method can be used to derive a possible time evolution of the dark energy as well as the growth index directly from distance measurements. Deviations from \LambdaΛCDM that we see in some of our results may be due to possibly insufficient flexibility of our method that could be cured by larger data samples, a real departure from \LambdaΛCDM at a\lesssim0.3a≲0.3, or hidden systematics in the data. The latter could be a matter of concern for all type-Ia supernovae analyses based on \LambdaΛCDM fitting approaches, especially in view of the current dispute on the value of H_0H0. These results illustrate the applicability of our approach as a diagnostic tool.
宇宙生长因子独立于模型的测定
描述宇宙及其结构演化的两个最重要的函数是膨胀函数one (a)E(a)和线性生长因子D_+(a)D+(a)。为了避免假设的宇宙学模型带来的偏差,最好基于最少的假设来约束它们。在以前的论文中,利用ia型超新星的距离模量以一种与模型无关的方式确定了膨胀函数,并且只假设重力、空间各向同性和均匀性的度量理论。在这里,我们从三个方面扩展了这一分析:(1)我们通过将ia型超新星的测量与重子声学振荡的测量相结合来扩大数据样本;(2)我们大大简化和推广了我们的重建展开函数的方法;(3)我们使用重构的膨胀函数来确定宇宙结构的线性增长因子,同样独立于基础宇宙模型的特定假设,而不是通常的空间对称性。在这种方法中,目前的物质密度参数\Omega _ \mathrm{m0} Ωm0is是对生长因子进行纯经验和精确测定的唯一相关参数。我们进一步展示了如何使用我们的方法直接从距离测量中推导出暗能量的可能时间演化以及生长指数。我们在一些结果中看到的与\Lambda ΛCDMthat的偏差可能是由于我们的方法灵活性不足,可以通过更大的数据样本来解决,与\Lambda ΛCDMat a \lesssim 0.3a≤0.3的面积偏差,或者数据中隐藏的系统性。后者可能是所有基于\Lambda ΛCDMfitting方法的ia型超新星分析所关注的问题,特别是考虑到目前对H_0H0值的争议。这些结果说明了我们的方法作为诊断工具的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信