{"title":"Epsilon Voting: Mechanism Design for Parameter Selection in Differential Privacy","authors":"Nitin Kohli, Paul Laskowski","doi":"10.1109/PAC.2018.00009","DOIUrl":null,"url":null,"abstract":"The behavior of a differentially private system is governed by a parameter epsilon which sets a balance between protecting the privacy of individuals and returning accurate results. While a system owner may use a number of heuristics to select epsilon, existing techniques may be unresponsive to the needs of the users who's data is at risk. A promising alternative is to allow users to express their preferences for epsilon. In a system we call epsilon voting, users report the parameter values they want to a chooser mechanism, which aggregates them into a single value. We apply techniques from mechanism design to ask whether such a chooser mechanism can itself be truthful, private, anonymous, and also responsive to users. Without imposing restrictions on user preferences, the only feasible mechanisms belong to a class we call randomized dictatorships with phantoms. This is a restrictive class in which at most one user has any effect on the chosen epsilon. On the other hand, when users exhibit single-peaked preferences, a broader class of mechanisms - ones that generalize the median and other order statistics - becomes possible.","PeriodicalId":208309,"journal":{"name":"2018 IEEE Symposium on Privacy-Aware Computing (PAC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Privacy-Aware Computing (PAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.2018.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
The behavior of a differentially private system is governed by a parameter epsilon which sets a balance between protecting the privacy of individuals and returning accurate results. While a system owner may use a number of heuristics to select epsilon, existing techniques may be unresponsive to the needs of the users who's data is at risk. A promising alternative is to allow users to express their preferences for epsilon. In a system we call epsilon voting, users report the parameter values they want to a chooser mechanism, which aggregates them into a single value. We apply techniques from mechanism design to ask whether such a chooser mechanism can itself be truthful, private, anonymous, and also responsive to users. Without imposing restrictions on user preferences, the only feasible mechanisms belong to a class we call randomized dictatorships with phantoms. This is a restrictive class in which at most one user has any effect on the chosen epsilon. On the other hand, when users exhibit single-peaked preferences, a broader class of mechanisms - ones that generalize the median and other order statistics - becomes possible.