From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Generation and Actor Extraction

L. Kof
{"title":"From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Generation and Actor Extraction","authors":"L. Kof","doi":"10.1109/RE.2008.12","DOIUrl":null,"url":null,"abstract":"Natural language is the main presentation means in industrial requirements documents. In such documents, system behavior is specified in the form of scenarios, with every scenario written as a sequence of sentences in natural language. To translate scenarios to executable models, message sequence charts (MSCs), we proposed an approach that analyzes textual scenarios by means of computational linguistics by L. Kof (2007). The presented paper shows that (1) a more differentiated treatment of certain sentence types than in our previous work results in better precision of the text-to-MSC translation and (2) it is possible to automate agent identification, performed semiautomatically in our previous work.","PeriodicalId":340621,"journal":{"name":"2008 16th IEEE International Requirements Engineering Conference","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Requirements Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2008.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Natural language is the main presentation means in industrial requirements documents. In such documents, system behavior is specified in the form of scenarios, with every scenario written as a sequence of sentences in natural language. To translate scenarios to executable models, message sequence charts (MSCs), we proposed an approach that analyzes textual scenarios by means of computational linguistics by L. Kof (2007). The presented paper shows that (1) a more differentiated treatment of certain sentence types than in our previous work results in better precision of the text-to-MSC translation and (2) it is possible to automate agent identification, performed semiautomatically in our previous work.
从文本场景到消息序列图:包括条件生成和行动者提取
自然语言是工业需求文档的主要表示方式。在这样的文档中,系统行为以场景的形式指定,每个场景用自然语言写成一系列句子。为了将场景转换为可执行模型,即消息序列图(MSCs),我们提出了一种方法,通过L. Kof(2007)的计算语言学来分析文本场景。本文表明:(1)与我们之前的工作相比,对某些句子类型进行更有区别的处理可以提高文本到msc翻译的精度;(2)可以自动识别代理,这在我们之前的工作中是半自动执行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信