{"title":"Assessing Perceived Sentiment in Pull Requests with Emoji: Evidence from Tools and Developer Eye Movements","authors":"Kang-il Park, Bonita Sharif","doi":"10.1109/SEmotion52567.2021.00009","DOIUrl":null,"url":null,"abstract":"The paper presents an eye tracking pilot study on understanding how developers read and assess sentiment in twenty-four GitHub pull requests containing emoji randomly selected from five different open source applications. Gaze data was collected on various elements of the pull request page in Google Chrome while the developers were tasked with determining perceived sentiment. The developer perceived sentiment was compared with sentiment output from five state-of-the-art sentiment analysis tools. SentiStrength-SE had the highest performance, with 55.56% of its predictions being agreed upon by study participants. On the other hand, Stanford CoreNLP fared the worst, with only 5.56% of its predictions matching that of the participants’. Gaze data shows the top three areas that developers looked at the most were the comment body, added lines of code, and username (the person writing the comment). The results also show high attention given to emoji in the pull request comment body compared to the rest of the comment text. These results can help provide additional guidelines on the pull request review process.","PeriodicalId":432937,"journal":{"name":"2021 IEEE/ACM Sixth International Workshop on Emotion Awareness in Software Engineering (SEmotion)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Sixth International Workshop on Emotion Awareness in Software Engineering (SEmotion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEmotion52567.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The paper presents an eye tracking pilot study on understanding how developers read and assess sentiment in twenty-four GitHub pull requests containing emoji randomly selected from five different open source applications. Gaze data was collected on various elements of the pull request page in Google Chrome while the developers were tasked with determining perceived sentiment. The developer perceived sentiment was compared with sentiment output from five state-of-the-art sentiment analysis tools. SentiStrength-SE had the highest performance, with 55.56% of its predictions being agreed upon by study participants. On the other hand, Stanford CoreNLP fared the worst, with only 5.56% of its predictions matching that of the participants’. Gaze data shows the top three areas that developers looked at the most were the comment body, added lines of code, and username (the person writing the comment). The results also show high attention given to emoji in the pull request comment body compared to the rest of the comment text. These results can help provide additional guidelines on the pull request review process.