Duality Property of Two-Sided Quaternion Fourier Transform

M. Bahri, R. Ashino
{"title":"Duality Property of Two-Sided Quaternion Fourier Transform","authors":"M. Bahri, R. Ashino","doi":"10.1109/ICWAPR.2018.8521310","DOIUrl":null,"url":null,"abstract":"An alternative proof of scalar Parseval's formula with respect to the two-sided quaternion Fourier transform is presented. It is shown that the inverse of the two-sided quaternion Fourier transform is continuous and bounded on R 2. The duality property of the two-sided quaternion Fourier transform is established. The alternative form of the Hausdorff-Young inequality associated with the two-sided quaternion Fourier transform is expressed. AMS Subject Classification: 11R52, 42A38, 15A66","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An alternative proof of scalar Parseval's formula with respect to the two-sided quaternion Fourier transform is presented. It is shown that the inverse of the two-sided quaternion Fourier transform is continuous and bounded on R 2. The duality property of the two-sided quaternion Fourier transform is established. The alternative form of the Hausdorff-Young inequality associated with the two-sided quaternion Fourier transform is expressed. AMS Subject Classification: 11R52, 42A38, 15A66
双边四元数傅里叶变换的对偶性
给出了标量Parseval公式关于双边四元数傅里叶变换的另一种证明。证明了双边四元数傅里叶变换的逆是连续的,并且在r2上有界。建立了双边四元数傅里叶变换的对偶性质。与双边四元数傅里叶变换相关的Hausdorff-Young不等式的替代形式被表示。学科分类:11R52、42A38、15A66
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信