SPATIAL CHANNEL COVARIANCE ESTIMATION FOR THE HYBRID ARCHITECTURE AT A BASE STATION: A TENSOR-DECOMPOSITION-BASED APPROACH

Sungwoo Park, Anum Ali, N. G. Prelcic, R. Heath
{"title":"SPATIAL CHANNEL COVARIANCE ESTIMATION FOR THE HYBRID ARCHITECTURE AT A BASE STATION: A TENSOR-DECOMPOSITION-BASED APPROACH","authors":"Sungwoo Park, Anum Ali, N. G. Prelcic, R. Heath","doi":"10.1109/GlobalSIP.2018.8646605","DOIUrl":null,"url":null,"abstract":"Spatial channel covariance information can replace instantaneous full channel state information for designing hybrid analog/digital precoders. Estimating the spatial channel covariance is challenging due to the inherent limitation of the hybrid architecture, i.e., much fewer radio frequency (RF) chains than antennas. In this paper, we propose a spatial channel covariance estimation method for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. Numerical results demonstrate that the proposed approach achieves higher estimation accuracy in comparison with existing covariance estimation methods.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Spatial channel covariance information can replace instantaneous full channel state information for designing hybrid analog/digital precoders. Estimating the spatial channel covariance is challenging due to the inherent limitation of the hybrid architecture, i.e., much fewer radio frequency (RF) chains than antennas. In this paper, we propose a spatial channel covariance estimation method for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. Numerical results demonstrate that the proposed approach achieves higher estimation accuracy in comparison with existing covariance estimation methods.
混合基站空间信道协方差估计:基于张量分解的方法
空间信道协方差信息可以代替瞬时全信道状态信息用于模拟/数字混合预编码器的设计。由于混合架构的固有限制,即射频(RF)链比天线少得多,因此估计空间信道协方差具有挑战性。针对空间稀疏时变选频信道,提出了一种空间信道协方差估计方法。所提出的方法利用了信道可以表示为低秩高阶张量的事实。数值结果表明,与现有的协方差估计方法相比,该方法具有更高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信