A Deep Learning Based Approach to Transliteration

NEWS@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-2411
Soumyadeep Kundu, Sayantan Paul, Santanu Pal
{"title":"A Deep Learning Based Approach to Transliteration","authors":"Soumyadeep Kundu, Sayantan Paul, Santanu Pal","doi":"10.18653/v1/W18-2411","DOIUrl":null,"url":null,"abstract":"In this paper, we propose different architectures for language independent machine transliteration which is extremely important for natural language processing (NLP) applications. Though a number of statistical models for transliteration have already been proposed in the past few decades, we proposed some neural network based deep learning architectures for the transliteration of named entities. Our transliteration systems adapt two different neural machine translation (NMT) frameworks: recurrent neural network and convolutional sequence to sequence based NMT. It is shown that our method provides quite satisfactory results when it comes to multi lingual machine transliteration. Our submitted runs are an ensemble of different transliteration systems for all the language pairs. In the NEWS 2018 Shared Task on Transliteration, our method achieves top performance for the En–Pe and Pe–En language pairs and comparable results for other cases.","PeriodicalId":189654,"journal":{"name":"NEWS@ACL","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we propose different architectures for language independent machine transliteration which is extremely important for natural language processing (NLP) applications. Though a number of statistical models for transliteration have already been proposed in the past few decades, we proposed some neural network based deep learning architectures for the transliteration of named entities. Our transliteration systems adapt two different neural machine translation (NMT) frameworks: recurrent neural network and convolutional sequence to sequence based NMT. It is shown that our method provides quite satisfactory results when it comes to multi lingual machine transliteration. Our submitted runs are an ensemble of different transliteration systems for all the language pairs. In the NEWS 2018 Shared Task on Transliteration, our method achieves top performance for the En–Pe and Pe–En language pairs and comparable results for other cases.
基于深度学习的音译方法
在本文中,我们提出了不同的语言独立机器音译体系结构,这对于自然语言处理(NLP)的应用非常重要。虽然在过去的几十年里已经提出了许多用于音译的统计模型,但我们提出了一些基于神经网络的深度学习架构用于命名实体的音译。我们的音译系统采用了两种不同的神经机器翻译(NMT)框架:循环神经网络和卷积序列。结果表明,该方法在多语言机器音译方面取得了令人满意的结果。我们提交的运行是所有语言对的不同音译系统的集合。在NEWS 2018关于音译的共享任务中,我们的方法在En-Pe和Pe-En语言对上取得了最好的成绩,在其他情况下也取得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信