Super-Twisting Algorithm-based Sliding Mode Observer for Open-Circuit Fault Diagnosis in PWM Voltage Source Inverter in an In-Wheel Motor Drive System

Maliheh Hashemi, M. Stolz, D. Watzenig
{"title":"Super-Twisting Algorithm-based Sliding Mode Observer for Open-Circuit Fault Diagnosis in PWM Voltage Source Inverter in an In-Wheel Motor Drive System","authors":"Maliheh Hashemi, M. Stolz, D. Watzenig","doi":"10.1109/ICM54990.2023.10102000","DOIUrl":null,"url":null,"abstract":"To enhance the reliability of in-wheel motors, it is crucial to avoid failures in the motors, sensors and the motor drives. However, in-wheel motor structures formed on permanent magnet synchronous motors (PMSMs) and voltage source inverter (VSI) using pulse-width modulation (PWM) are fragile to power-converter component faults such as power switches. Furthermore, switching device faults accrue in the form of open circuits or short circuits. An open circuit fault imposes phase voltage imbalances to each phase voltage. This paper presents a new approach to detect the imbalanced phase voltage due to the open-circuit fault in the inverters employing a super-twisting algorithm-based sliding mode observer. The combination of proposed observer with the Extended Kalman filter (EKF) results in a robust observer which can be used under the noisy measurement conditions that are unavoidable in industrial applications. In addition, the simulated observer applies a model-based fault detection algorithm, enabling the fault to be isolated more easily and reliably than when using signal processing methods.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10102000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To enhance the reliability of in-wheel motors, it is crucial to avoid failures in the motors, sensors and the motor drives. However, in-wheel motor structures formed on permanent magnet synchronous motors (PMSMs) and voltage source inverter (VSI) using pulse-width modulation (PWM) are fragile to power-converter component faults such as power switches. Furthermore, switching device faults accrue in the form of open circuits or short circuits. An open circuit fault imposes phase voltage imbalances to each phase voltage. This paper presents a new approach to detect the imbalanced phase voltage due to the open-circuit fault in the inverters employing a super-twisting algorithm-based sliding mode observer. The combination of proposed observer with the Extended Kalman filter (EKF) results in a robust observer which can be used under the noisy measurement conditions that are unavoidable in industrial applications. In addition, the simulated observer applies a model-based fault detection algorithm, enabling the fault to be isolated more easily and reliably than when using signal processing methods.
基于超扭转算法的滑模观测器在轮式电机驱动系统PWM电压源逆变器开路故障诊断中的应用
为了提高轮毂电机的可靠性,避免电机、传感器和电机驱动器的故障是至关重要的。然而,在永磁同步电机(pmsm)和采用脉宽调制(PWM)的电压源逆变器(VSI)上形成的轮内电机结构容易受到功率转换器组件故障(如功率开关)的影响。此外,开关设备故障以开路或短路的形式出现。开路故障使各相电压不平衡。本文提出了一种基于超扭转算法的滑模观测器检测逆变器开路故障引起的相电压不平衡的新方法。该观测器与扩展卡尔曼滤波(EKF)相结合,产生了一个鲁棒观测器,可用于工业应用中不可避免的噪声测量条件。此外,仿真观测器采用了基于模型的故障检测算法,使得故障隔离比使用信号处理方法更容易、更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信