{"title":"Hardware Efficient Architecture for Generating Sine/Cosine Waves","authors":"Supriya Aggarwal, K. Khare","doi":"10.1109/VLSID.2012.46","DOIUrl":null,"url":null,"abstract":"This paper presents a hardware efficient architecture for generating sine and cosine waves based on the CORDIC (Coordinate Rotation Digital Computer) algorithm. In its original form the CORDIC suffers from major drawbacks like scale-factor calculation, latency and optimal selection of micro-rotations. The proposed algorithm overcomes all these drawbacks. We use leading-one bit detection technique to identify the micro-rotations. The scale-free design of the proposed algorithm is based on Taylor series expansion of the sine and cosine waves. The 16-bit iterative architecture achieves approximately 4.5% and 6.7% lower slice-delay product as compared to the other existing designs. The algorithm design and its VLSI implementation are detailed.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper presents a hardware efficient architecture for generating sine and cosine waves based on the CORDIC (Coordinate Rotation Digital Computer) algorithm. In its original form the CORDIC suffers from major drawbacks like scale-factor calculation, latency and optimal selection of micro-rotations. The proposed algorithm overcomes all these drawbacks. We use leading-one bit detection technique to identify the micro-rotations. The scale-free design of the proposed algorithm is based on Taylor series expansion of the sine and cosine waves. The 16-bit iterative architecture achieves approximately 4.5% and 6.7% lower slice-delay product as compared to the other existing designs. The algorithm design and its VLSI implementation are detailed.