matteo-brv @ DaDoEval: An SVM-based Approach for Automatic Document Dating (short paper)

M. Brivio
{"title":"matteo-brv @ DaDoEval: An SVM-based Approach for Automatic Document Dating (short paper)","authors":"M. Brivio","doi":"10.4000/BOOKS.AACCADEMIA.7593","DOIUrl":null,"url":null,"abstract":"English. This paper describes our con-tribution to the EVALITA 2020 shared task DaDoEval – Dating Document Evaluation. The solution we present is based on a linear multi-class Support Vector Machine classifier trained on a combination of character and word n-grams, as well as number of word tokens per document. Despite its simplicity, the system ranked first both in the coarse-grained classification task on same-genre data and in the one on cross-genre data, achieving a macro-average F1 score of 0.934 and 0.413, respectively. The system implementation is available at https://github.com/ matteobrv/DaDoEval .","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

English. This paper describes our con-tribution to the EVALITA 2020 shared task DaDoEval – Dating Document Evaluation. The solution we present is based on a linear multi-class Support Vector Machine classifier trained on a combination of character and word n-grams, as well as number of word tokens per document. Despite its simplicity, the system ranked first both in the coarse-grained classification task on same-genre data and in the one on cross-genre data, achieving a macro-average F1 score of 0.934 and 0.413, respectively. The system implementation is available at https://github.com/ matteobrv/DaDoEval .
matteo-brv @ DaDoEval:一种基于svm的自动文档年代测定方法(短文)
英语。本文描述了我们对EVALITA 2020共享任务DaDoEval - Dating Document Evaluation的贡献。我们提出的解决方案是基于一个线性多类支持向量机分类器,该分类器是在字符和单词n-gram的组合以及每个文档的单词令牌数量上训练的。虽然系统简单,但在同类型数据粗粒度分类任务和跨类型数据粗粒度分类任务中均排名第一,宏观平均F1得分分别为0.934和0.413。系统实现可从https://github.com/ matteobrv/DaDoEval获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信