{"title":"A Fault Detection Approach Using Variational Mode Decomposition, L-kurtosis and Random Decrement Technique for Rotating Machinery","authors":"Hui Liu, Zhiyu Shi","doi":"10.11648/J.IJMEA.20200801.13","DOIUrl":null,"url":null,"abstract":"Fault detection of rotating machinery under heavy noise background, is a significant but difficult issue, and traditional fault detection approaches are difficult to apply. To address this problem, a novel approach that combines variational mode decomposition (VMD), L-Kurtosis and random decrement technique (RDT) is proposed, which procedures are summarized as follows. First, the raw vibration signal collected from the rotating component is decomposed using VMD into a set of intrinsic mode functions (IMFs), and the noise components can be separated from the raw signal. Second, the L-Kurtosis indicator is introduced to solve the problem that the fault information is difficult to track, and the optimal intrinsic mode function (IMF) can be determined according to the maximum L-Kurtosis value. Then, RDT is further employed to purify the optimal IMF to eliminate the other unknown interference sources. Finally, a Hilbert envelope spectrum analysis is used for detecting the fault type. In order to validate the proposed approach, the numerical simulations and real experimental investigations about rolling element bearing and gear are conducted. The results illustrate that the proposed approach can effectively detect faults of rotating components.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20200801.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fault detection of rotating machinery under heavy noise background, is a significant but difficult issue, and traditional fault detection approaches are difficult to apply. To address this problem, a novel approach that combines variational mode decomposition (VMD), L-Kurtosis and random decrement technique (RDT) is proposed, which procedures are summarized as follows. First, the raw vibration signal collected from the rotating component is decomposed using VMD into a set of intrinsic mode functions (IMFs), and the noise components can be separated from the raw signal. Second, the L-Kurtosis indicator is introduced to solve the problem that the fault information is difficult to track, and the optimal intrinsic mode function (IMF) can be determined according to the maximum L-Kurtosis value. Then, RDT is further employed to purify the optimal IMF to eliminate the other unknown interference sources. Finally, a Hilbert envelope spectrum analysis is used for detecting the fault type. In order to validate the proposed approach, the numerical simulations and real experimental investigations about rolling element bearing and gear are conducted. The results illustrate that the proposed approach can effectively detect faults of rotating components.