Using Fully Connected and Convolutional Net for GAN-Based Face Swapping

Bo-Shue Lin, Ding-Wen Hsu, Chin-Han Shen, Hsu-Feng Hsiao
{"title":"Using Fully Connected and Convolutional Net for GAN-Based Face Swapping","authors":"Bo-Shue Lin, Ding-Wen Hsu, Chin-Han Shen, Hsu-Feng Hsiao","doi":"10.1109/APCCAS50809.2020.9301665","DOIUrl":null,"url":null,"abstract":"The lifelike results of using face swapping have contributed greatly to the research in computer vision. In this work, we extend the architecture of faceswap-GAN in order to obtain more natural results compared to the original framework. In the original architecture, the self-attention module usually converts the facial features from a source face to the target face with artificial distortion around the facial features. We use a structure of fully connected convolutional layers as a discriminator to approach the problem. The outcome can be smoother and more natural perceptually compared to the results using the original faceswap-GAN.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The lifelike results of using face swapping have contributed greatly to the research in computer vision. In this work, we extend the architecture of faceswap-GAN in order to obtain more natural results compared to the original framework. In the original architecture, the self-attention module usually converts the facial features from a source face to the target face with artificial distortion around the facial features. We use a structure of fully connected convolutional layers as a discriminator to approach the problem. The outcome can be smoother and more natural perceptually compared to the results using the original faceswap-GAN.
基于全连接卷积网络的gan人脸交换
人脸交换的逼真效果为计算机视觉的研究做出了重要贡献。在这项工作中,我们扩展了faceswap-GAN的架构,以获得比原始框架更自然的结果。在原有的体系结构中,自关注模块通常是通过对人脸特征周围进行人工畸变,将人脸特征从源人脸转换为目标人脸。我们使用全连接的卷积层结构作为鉴别器来解决这个问题。与使用原始换脸gan的结果相比,该结果在感知上更平滑,更自然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信