Research on Adaptive Friction Compensation for Electric Linear Load Simulator Based Backstepping controller

Da-Wei Cao, Yuan-Xun Fan, Wei-Dong Pan, Peng-Cheng Lu, Jian-Wei Zhang
{"title":"Research on Adaptive Friction Compensation for Electric Linear Load Simulator Based Backstepping controller","authors":"Da-Wei Cao, Yuan-Xun Fan, Wei-Dong Pan, Peng-Cheng Lu, Jian-Wei Zhang","doi":"10.1109/CACRE50138.2020.9230180","DOIUrl":null,"url":null,"abstract":"The electric linear load simulator (ELLS) is one kind of servo system with uncertainties and disturbances such as friction nonlinear characters. In order to improve the loading accuracy of ELLS system, aiming at the friction torque existing in the system, we present adaptive friction Backstepping controller based on the LuGre friction model. Using Lyapunov stability theorem to prove the global asymptotic stability of the system. Backstepping control theory reorganizes system equations into multiple virtual subsystems. Design virtual control variables for each virtual subsystems, and obtain the system nonlinear controller by Backstepping recursion. Finally, simulation results show that: compared with the traditional force command feedforward compensation + PID controller, the adaptive friction Backstepping controller can better suppress the excess force, ELLS system output can achieve asymptotic tracking of the given force reference signal. The proposed control method can better suppress the effect of friction on ELLS system and improve the loading accuracy.","PeriodicalId":325195,"journal":{"name":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE50138.2020.9230180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electric linear load simulator (ELLS) is one kind of servo system with uncertainties and disturbances such as friction nonlinear characters. In order to improve the loading accuracy of ELLS system, aiming at the friction torque existing in the system, we present adaptive friction Backstepping controller based on the LuGre friction model. Using Lyapunov stability theorem to prove the global asymptotic stability of the system. Backstepping control theory reorganizes system equations into multiple virtual subsystems. Design virtual control variables for each virtual subsystems, and obtain the system nonlinear controller by Backstepping recursion. Finally, simulation results show that: compared with the traditional force command feedforward compensation + PID controller, the adaptive friction Backstepping controller can better suppress the excess force, ELLS system output can achieve asymptotic tracking of the given force reference signal. The proposed control method can better suppress the effect of friction on ELLS system and improve the loading accuracy.
基于反步控制器的电动线性负载模拟器自适应摩擦补偿研究
电动线性负载模拟器(ELLS)是一种具有摩擦非线性等不确定性和干扰的伺服系统。为了提高ELLS系统的加载精度,针对系统中存在的摩擦力矩,提出了基于LuGre摩擦模型的自适应摩擦反演控制器。利用Lyapunov稳定性定理证明了系统的全局渐近稳定性。退步控制理论将系统方程重组为多个虚拟子系统。为每个虚拟子系统设计虚拟控制变量,并通过反步递归得到系统的非线性控制器。最后,仿真结果表明:与传统力指令前馈补偿+ PID控制器相比,自适应摩擦反步控制器能更好地抑制多余力,ELLS系统输出能实现给定力参考信号的渐近跟踪。所提出的控制方法能较好地抑制摩擦对ELLS系统的影响,提高加载精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信