Optimal Decision-Making Strategies for Self-Driving Car Inspired by Game Theory

Kyoungtae Ji, Kyoungseok Han
{"title":"Optimal Decision-Making Strategies for Self-Driving Car Inspired by Game Theory","authors":"Kyoungtae Ji, Kyoungseok Han","doi":"10.1109/ICUFN49451.2021.9528803","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal decision-making strategy for a self-driving car using a game-theoretic approach. To ensure the safety of the decision, Stackelberg game's maximin reward strategy, which considers concurrency, is applied. The receding horizon is included to increase the accuracy of the decision, but the computational burden is high. We assume that the follower takes only one prediction time, not the receding horizon, to relieve the computational burden. For an accurate prediction of interacting vehicles, the intention estimation model is suggested. We demonstrate the efficiency of our approach in a simulation environment and various traffic conditions.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimal decision-making strategy for a self-driving car using a game-theoretic approach. To ensure the safety of the decision, Stackelberg game's maximin reward strategy, which considers concurrency, is applied. The receding horizon is included to increase the accuracy of the decision, but the computational burden is high. We assume that the follower takes only one prediction time, not the receding horizon, to relieve the computational burden. For an accurate prediction of interacting vehicles, the intention estimation model is suggested. We demonstrate the efficiency of our approach in a simulation environment and various traffic conditions.
基于博弈论的自动驾驶汽车最优决策策略
本文利用博弈论的方法提出了一种自动驾驶汽车的最优决策策略。为了保证决策的安全性,采用了考虑并发性的Stackelberg博弈的最大奖励策略。为了提高决策精度,引入了视界后退,但计算量大。我们假设追随者只需要一个预测时间,而不是后退的视界,以减轻计算负担。为了准确预测相互作用的车辆,提出了意图估计模型。我们在模拟环境和各种交通条件下证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信