SEBINI-CABIN: An Analysis Pipeline for Biological Network Inference, with a Case Study in Protein-Protein Interaction Network Reconstruction

Ronald C. Taylor, Mudita Singhal, D. S. Daly, Kelly Domico, Amanda M. White, D. Auberry, K. Auberry, Brian Hooker, Gregory B. Hurst, Jason E. McDermott, W. H. McDonald, Dale A. Pelletier, Denise Schmoyer, William R. Cannon
{"title":"SEBINI-CABIN: An Analysis Pipeline for Biological Network Inference, with a Case Study in Protein-Protein Interaction Network Reconstruction","authors":"Ronald C. Taylor, Mudita Singhal, D. S. Daly, Kelly Domico, Amanda M. White, D. Auberry, K. Auberry, Brian Hooker, Gregory B. Hurst, Jason E. McDermott, W. H. McDonald, Dale A. Pelletier, Denise Schmoyer, William R. Cannon","doi":"10.1109/ICMLA.2007.63","DOIUrl":null,"url":null,"abstract":"The Software Environment for Biological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment and testing of network inference algorithms that use high-throughput expression data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein- protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. In this paper, we present a case study on the SEBINI and CABIN tools for protein-protein interaction network reconstruction. Incorporating the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro) algorithm into the SEBINI toolkit, we have created a pipeline for structural inference and supplemental analysis of protein- protein interaction networks from sets of mass spectrometry bait-prey experiment data.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Software Environment for Biological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment and testing of network inference algorithms that use high-throughput expression data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein- protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. In this paper, we present a case study on the SEBINI and CABIN tools for protein-protein interaction network reconstruction. Incorporating the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro) algorithm into the SEBINI toolkit, we have created a pipeline for structural inference and supplemental analysis of protein- protein interaction networks from sets of mass spectrometry bait-prey experiment data.
SEBINI-CABIN:生物网络推断的分析管道,以蛋白质-蛋白质相互作用网络重构为例
生物网络推理软件环境(SEBINI)已经创建,为使用高通量表达数据的网络推理算法的部署和测试提供一个交互式环境。从SEBINI软件平台推断出的网络可以使用生物相互作用网络集体分析(CABIN)进一步分析,该软件允许整合和分析从多个来源获得的蛋白质-蛋白质相互作用和基因-基因调控证据。在本文中,我们介绍了SEBINI和CABIN工具用于蛋白质-蛋白质相互作用网络重建的案例研究。将蛋白质-蛋白质关联概率贝叶斯估计器(BEPro)算法整合到SEBINI工具包中,我们已经创建了一个管道,用于从质谱饵-猎物实验数据集中进行蛋白质-蛋白质相互作用网络的结构推断和补充分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信