Crop Type Classification using Multi-temporal Sentinel-2 Satellite Imagery: A Deep Semantic Segmentation Approach

Asim Khan, Zuhair Zafar, M. Shahzad, K. Berns, M. Fraz
{"title":"Crop Type Classification using Multi-temporal Sentinel-2 Satellite Imagery: A Deep Semantic Segmentation Approach","authors":"Asim Khan, Zuhair Zafar, M. Shahzad, K. Berns, M. Fraz","doi":"10.1109/ICRAI57502.2023.10089586","DOIUrl":null,"url":null,"abstract":"Crop Type classification using Semantic Segmentation and remote sensing data is an important tool for decision-making related to precision agriculture. Such classification remains an unsolved challenge due to the choice of landscape, processing methodology and selected satellite imagery and its optical features, and most importantly the availability and usage of such datasets in a developing country like Pakistan. State-of-the-art semantic segmentation models lack in processing the temporal dimension of time series imagery and evident solution to process multi-spectral bands available in the satellite imagery. We propose a methodology to overcome these shortcomings by selecting appropriate band combinations for crop type classification and treating time series visual data as a single image. The proposed methodology is evaluated on the data set of six different crops collected from National Agriculture Research Center (NARC) Islamabad. The experimental results yield 85% accuracy for classifying various crop types based on the evaluation of five different semantic segmentation models. The code and the trained models are available at https://github.com/asimniazi63/crop-type-narc for other researchers working in the same domain.","PeriodicalId":447565,"journal":{"name":"2023 International Conference on Robotics and Automation in Industry (ICRAI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Robotics and Automation in Industry (ICRAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAI57502.2023.10089586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Crop Type classification using Semantic Segmentation and remote sensing data is an important tool for decision-making related to precision agriculture. Such classification remains an unsolved challenge due to the choice of landscape, processing methodology and selected satellite imagery and its optical features, and most importantly the availability and usage of such datasets in a developing country like Pakistan. State-of-the-art semantic segmentation models lack in processing the temporal dimension of time series imagery and evident solution to process multi-spectral bands available in the satellite imagery. We propose a methodology to overcome these shortcomings by selecting appropriate band combinations for crop type classification and treating time series visual data as a single image. The proposed methodology is evaluated on the data set of six different crops collected from National Agriculture Research Center (NARC) Islamabad. The experimental results yield 85% accuracy for classifying various crop types based on the evaluation of five different semantic segmentation models. The code and the trained models are available at https://github.com/asimniazi63/crop-type-narc for other researchers working in the same domain.
基于多时相Sentinel-2卫星图像的作物类型分类:一种深度语义分割方法
基于语义分割和遥感数据的作物类型分类是精准农业决策的重要工具。由于景观的选择、处理方法和选定的卫星图像及其光学特征,以及最重要的是在巴基斯坦这样的发展中国家这种数据集的可用性和使用情况,这种分类仍然是一个未解决的挑战。现有的语义分割模型在处理时间序列图像的时间维度和处理卫星图像中可用的多光谱波段方面缺乏明显的解决方案。我们提出了一种方法,通过选择适当的波段组合来进行作物类型分类,并将时间序列视觉数据作为单个图像处理来克服这些缺点。拟议的方法是在伊斯兰堡国家农业研究中心(NARC)收集的六种不同作物的数据集上进行评估的。实验结果表明,基于五种不同的语义分割模型,对不同作物类型进行分类的准确率达到85%。代码和经过训练的模型可在https://github.com/asimniazi63/crop-type-narc上获得,供在同一领域工作的其他研究人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信