Implementation of Machine Learning Classifier for DTN Routing

J. George, R. Santhosh
{"title":"Implementation of Machine Learning Classifier for DTN Routing","authors":"J. George, R. Santhosh","doi":"10.1109/I-SMAC52330.2021.9640863","DOIUrl":null,"url":null,"abstract":"This paper presents, better routing method in Delay Tolerant Network using Machine learning. Delay Tolerant Network is a wireless network, in which nodes are changing its positions dynamically in an unexpected way due to that Round trip time and error rates are very high. Examples are Disaster area, under the sea, Space communication, etc. In the proposed method neighbouring nodes are predicted by machine learning classifiers. These nodes use message history delivery information to deliver the message on destination. With the help of Bundle protocol implementation IBR-DTN [3], collects network traffic status and real-world location trace. These information uses to emulate DTN environment by Common Open Research Emulator (CORE) [2]. The new application is used to predict the results, preparation for the network history data, analysis and classification-based routing.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents, better routing method in Delay Tolerant Network using Machine learning. Delay Tolerant Network is a wireless network, in which nodes are changing its positions dynamically in an unexpected way due to that Round trip time and error rates are very high. Examples are Disaster area, under the sea, Space communication, etc. In the proposed method neighbouring nodes are predicted by machine learning classifiers. These nodes use message history delivery information to deliver the message on destination. With the help of Bundle protocol implementation IBR-DTN [3], collects network traffic status and real-world location trace. These information uses to emulate DTN environment by Common Open Research Emulator (CORE) [2]. The new application is used to predict the results, preparation for the network history data, analysis and classification-based routing.
DTN路由机器学习分类器的实现
本文提出了一种基于机器学习的容延迟网络路由算法。容忍延迟网络是一种无线网络,由于节点之间的往返时间和错误率非常高,因此节点之间的位置会以一种意想不到的方式动态变化。例如灾区、海底、空间通信等。在该方法中,通过机器学习分类器预测相邻节点。这些节点使用消息历史传递信息在目的地传递消息。借助Bundle协议实现IBR-DTN[3],采集网络流量状态和真实世界位置轨迹。这些信息被通用开放研究仿真器(Common Open Research Emulator, CORE)用来模拟DTN环境[2]。新的应用程序用于预测结果、准备网络历史数据、分析和分类路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信