{"title":"Simulation of Parallel-Series Converter in Open Loop and Closed Loop for Wireless Power Transfer","authors":"Mayank Arora, Gururaj M V, Ankush Sharma","doi":"10.1109/GlobConPT57482.2022.9938216","DOIUrl":null,"url":null,"abstract":"Typically, the wireless power transfer is compensated using Parallel Series architecture powered by an inverter that is current sourced (CSI). It is mainly regulated at duty cycle with a 50% approach. This allows the system to run at its resonance frequency, which wanders as a result of load as well as other variable fluctuations. Due to such a controlling limitation, the loading specifications are met by installing an extra dc-dc converter at the circuit end. This simulation study provides an open loop and closed loop control approach for a Parallel-Series WPT topology, which is supplied by a full-bridge CSI to fulfill the load requirement directly. So, the converter's output side chopper is eliminated. The control objectives are met by a two-loop technique in which source current is regulated by the inner loop and load current by outer loop. This study describes in-depth converter design analysis and closed loop control design in PSIM software.","PeriodicalId":431406,"journal":{"name":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConPT57482.2022.9938216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Typically, the wireless power transfer is compensated using Parallel Series architecture powered by an inverter that is current sourced (CSI). It is mainly regulated at duty cycle with a 50% approach. This allows the system to run at its resonance frequency, which wanders as a result of load as well as other variable fluctuations. Due to such a controlling limitation, the loading specifications are met by installing an extra dc-dc converter at the circuit end. This simulation study provides an open loop and closed loop control approach for a Parallel-Series WPT topology, which is supplied by a full-bridge CSI to fulfill the load requirement directly. So, the converter's output side chopper is eliminated. The control objectives are met by a two-loop technique in which source current is regulated by the inner loop and load current by outer loop. This study describes in-depth converter design analysis and closed loop control design in PSIM software.