Software Framework for Data Fault Injection to Test Machine Learning Systems

J. Nurminen, Tuomas Halvari, Juha Harviainen, Juha Mylläri, Antti Röyskö, Juuso Silvennoinen, T. Mikkonen
{"title":"Software Framework for Data Fault Injection to Test Machine Learning Systems","authors":"J. Nurminen, Tuomas Halvari, Juha Harviainen, Juha Mylläri, Antti Röyskö, Juuso Silvennoinen, T. Mikkonen","doi":"10.1109/ISSREW.2019.00087","DOIUrl":null,"url":null,"abstract":"Data-intensive systems are sensitive to the quality of data. Data often has problems due to faulty sensors or network problems, for instance. In this work, we develop a software framework to emulate faults in data and use it to study how machine learning (ML) systems work when the data has problems. We aim for flexibility: users can use predefined or their own dedicated fault models. Likewise, different kind of data (e.g. text, time series, video) can be used and the system under test can vary from a single ML model to a complicated software system. Our goal is to show how data faults can be emulated and how that can be used in the study and development of ML solutions.","PeriodicalId":166239,"journal":{"name":"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2019.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Data-intensive systems are sensitive to the quality of data. Data often has problems due to faulty sensors or network problems, for instance. In this work, we develop a software framework to emulate faults in data and use it to study how machine learning (ML) systems work when the data has problems. We aim for flexibility: users can use predefined or their own dedicated fault models. Likewise, different kind of data (e.g. text, time series, video) can be used and the system under test can vary from a single ML model to a complicated software system. Our goal is to show how data faults can be emulated and how that can be used in the study and development of ML solutions.
用于测试机器学习系统的数据故障注入软件框架
数据密集型系统对数据质量非常敏感。例如,由于传感器故障或网络问题,数据经常出现问题。在这项工作中,我们开发了一个软件框架来模拟数据中的错误,并使用它来研究机器学习(ML)系统在数据有问题时如何工作。我们的目标是灵活性:用户可以使用预定义的或他们自己专用的故障模型。同样,可以使用不同类型的数据(例如文本,时间序列,视频),并且被测试的系统可以从单个ML模型到复杂的软件系统。我们的目标是展示如何模拟数据错误,以及如何将其用于ML解决方案的研究和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信