Room Style Estimation for Style-Aware Recommendation

E. Cansizoglu, Hantian Liu, Tomer Weiss, Archi Mitra, Dhaval Dholakia, Jae-Woo Choi, D. Wulin
{"title":"Room Style Estimation for Style-Aware Recommendation","authors":"E. Cansizoglu, Hantian Liu, Tomer Weiss, Archi Mitra, Dhaval Dholakia, Jae-Woo Choi, D. Wulin","doi":"10.1109/AIVR46125.2019.00062","DOIUrl":null,"url":null,"abstract":"Interior design is a complex task as evident by multitude of professionals, websites, and books, offering design advice. Additionally, such advice is highly subjective in nature since different experts might have different interior design opinions. Our goal is to offer data-driven recommendations for an interior design task that reflects an individual's room style preferences. We present a style-based image suggestion framework to search for room ideas and relevant products for a given query image. We train a deep neural network classifier by focusing on high volume classes with high-agreement samples using a VGG architecture. The resulting model shows promising results and paves the way to style-aware product recommendation in virtual reality platforms for 3D room design.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Interior design is a complex task as evident by multitude of professionals, websites, and books, offering design advice. Additionally, such advice is highly subjective in nature since different experts might have different interior design opinions. Our goal is to offer data-driven recommendations for an interior design task that reflects an individual's room style preferences. We present a style-based image suggestion framework to search for room ideas and relevant products for a given query image. We train a deep neural network classifier by focusing on high volume classes with high-agreement samples using a VGG architecture. The resulting model shows promising results and paves the way to style-aware product recommendation in virtual reality platforms for 3D room design.
用于风格感知推荐的房间风格评估
室内设计是一项复杂的任务,许多专业人士、网站和书籍都提供了设计建议。此外,这种建议在本质上是高度主观的,因为不同的专家可能有不同的室内设计意见。我们的目标是为反映个人房间风格偏好的室内设计任务提供数据驱动的建议。我们提出了一个基于风格的图像建议框架,为给定的查询图像搜索房间创意和相关产品。我们通过使用VGG架构专注于具有高一致性样本的大容量类来训练深度神经网络分类器。所得到的模型显示出令人满意的结果,为3D房间设计的虚拟现实平台的风格感知产品推荐铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信