Subspace similarity search using the ideas of ranking and top-k retrieval

T. Bernecker, Tobias Emrich, Franz Graf, H. Kriegel, Peer Kröger, M. Renz, Erich Schubert, A. Zimek
{"title":"Subspace similarity search using the ideas of ranking and top-k retrieval","authors":"T. Bernecker, Tobias Emrich, Franz Graf, H. Kriegel, Peer Kröger, M. Renz, Erich Schubert, A. Zimek","doi":"10.1109/ICDEW.2010.5452771","DOIUrl":null,"url":null,"abstract":"There are abundant scenarios for applications of similarity search in databases where the similarity of objects is defined for a subset of attributes, i.e., in a subspace, only. While much research has been done in efficient support of single column similarity queries or of similarity queries in the full space, scarcely any support of similarity search in subspaces has been provided so far. The three existing approaches are variations of the sequential scan. Here, we propose the first index-based solution to subspace similarity search in arbitrary subspaces which is based on the concepts of nearest neighbor ranking and top-k retrieval.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There are abundant scenarios for applications of similarity search in databases where the similarity of objects is defined for a subset of attributes, i.e., in a subspace, only. While much research has been done in efficient support of single column similarity queries or of similarity queries in the full space, scarcely any support of similarity search in subspaces has been provided so far. The three existing approaches are variations of the sequential scan. Here, we propose the first index-based solution to subspace similarity search in arbitrary subspaces which is based on the concepts of nearest neighbor ranking and top-k retrieval.
基于排序和top-k检索思想的子空间相似性搜索
在数据库中有很多相似度搜索的应用场景,其中对象的相似度是为属性的子集定义的,即仅在子空间中定义。虽然在单列相似性查询和全空间相似性查询的有效支持方面已经做了很多研究,但是对子空间相似性查询的支持还很少。现有的三种方法是顺序扫描的变体。本文提出了基于最近邻排序和top-k检索概念的任意子空间相似性搜索的第一个基于索引的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信