{"title":"An On-chip Heterogeneous Implementation of a General Sparse Linear Solver","authors":"Arash Sadrieh, Stefano Charissis, A. Hill","doi":"10.1109/IPDPSW.2013.51","DOIUrl":null,"url":null,"abstract":"Inter-device communication is a common limitation of GPGPU computing methods. The on-chip heterogeneous architecture of a recent class of accelerated processing units (APUs), that combine programmable CPU and GPU cores on the same die, presents an opportunity to address this problem. Here we describe an APU-based heterogeneous implementation of the Jacobi-preconditioned conjugate gradient method and identify a set of optimal configurations based on examination of standard matrices. By leveraging the low-latency memory transactions of the APU and exploiting CPU/GPU cohabitation for concurrent vector operations, a comparable performance to that of a high-end GPU running CUSP is achieved. Our results show that use of on-chip heterogeneous architectures can be attractively cost-effective and even show better performance for applications with a low number of linear solver iterations and when device-to-device data transfer is significant. Accordingly, the APU architecture and associated GPAPU methods have significant potential as a low cost, energy efficient alternative for parallel HPC architectures.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Inter-device communication is a common limitation of GPGPU computing methods. The on-chip heterogeneous architecture of a recent class of accelerated processing units (APUs), that combine programmable CPU and GPU cores on the same die, presents an opportunity to address this problem. Here we describe an APU-based heterogeneous implementation of the Jacobi-preconditioned conjugate gradient method and identify a set of optimal configurations based on examination of standard matrices. By leveraging the low-latency memory transactions of the APU and exploiting CPU/GPU cohabitation for concurrent vector operations, a comparable performance to that of a high-end GPU running CUSP is achieved. Our results show that use of on-chip heterogeneous architectures can be attractively cost-effective and even show better performance for applications with a low number of linear solver iterations and when device-to-device data transfer is significant. Accordingly, the APU architecture and associated GPAPU methods have significant potential as a low cost, energy efficient alternative for parallel HPC architectures.