A General Variational Formulation for Relativistic Mechanics Based on Fundamentals of Differential Geometry

F. Botelho
{"title":"A General Variational Formulation for Relativistic Mechanics Based on Fundamentals of Differential Geometry","authors":"F. Botelho","doi":"10.1201/9781003158912-8","DOIUrl":null,"url":null,"abstract":"The first part of this article develops a variational formulation for relativistic mechanics. The results are established through standard tools of variational analysis and differential geometry. The novelty here is that the main motion manifold has a $n+1$ dimensional range. It is worth emphasizing in a first approximation we have neglected the self-interaction energy part. In its second part, this article develops some formalism concerning the causal structure in a general space-time manifold. Finally, the last article section presents a result concerning the existence of a generalized solution for the world sheet manifold variational formulation.","PeriodicalId":347698,"journal":{"name":"Advanced Calculus and its Applications in Variational Quantum Mechanics and Relativity Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Calculus and its Applications in Variational Quantum Mechanics and Relativity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003158912-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first part of this article develops a variational formulation for relativistic mechanics. The results are established through standard tools of variational analysis and differential geometry. The novelty here is that the main motion manifold has a $n+1$ dimensional range. It is worth emphasizing in a first approximation we have neglected the self-interaction energy part. In its second part, this article develops some formalism concerning the causal structure in a general space-time manifold. Finally, the last article section presents a result concerning the existence of a generalized solution for the world sheet manifold variational formulation.
基于微分几何基础的相对论力学的一般变分公式
本文的第一部分发展了相对论力学的变分公式。结果是通过变分分析和微分几何的标准工具建立的。这里的新奇之处在于主运动流形有一个n+1的维度范围。值得强调的是,在第一个近似中,我们忽略了自相互作用能部分。在第二部分,本文发展了关于一般时空流形的因果结构的一些形式主义。最后,本文给出了世界表流形变分公式的一个广义解的存在性的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信