{"title":"A neuro-fuzzy algorithm for coordinated traffic responsive ramp metering","authors":"K. Bogenberger, H. Keller, S. Vukanovic","doi":"10.1109/ITSC.2001.948636","DOIUrl":null,"url":null,"abstract":"This paper proposes a nonlinear approach for designing traffic responsive and coordinated ramp control using a self adapting fuzzy system. An adaptive neuro-fuzzy inference system (ANFIS) is used to incorporate a hybrid learning procedure into the control system. The traffic responsive metering rate is determined in every minute by the neuro-fuzzy control algorithm. Coordination between multiple on-ramps is ensured by the integration of a common input into all ramp controllers upstream of a bottleneck and a periodical update of the fuzzy control system in every 15 min. by a hybrid learning procedure. The objective of the online tuning process of the fuzzy parameters is to minimize the total time spent in the system. Therefore, Payne's traffic flow model and a deterministic queuing model are integrated into the control architecture To assess the impacts of the neuro-fuzzy ramp metering algorithm a section of 25 km of the A9 Autobahn was simulated with the FREQ model and compared with two other control scenarios. The results of the simulation of the neuro-fuzzy algorithm are very promising and an implementation of the neuro-fuzzy ramp metering system on a Munich middle ring road within the MOBINET project is planned.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper proposes a nonlinear approach for designing traffic responsive and coordinated ramp control using a self adapting fuzzy system. An adaptive neuro-fuzzy inference system (ANFIS) is used to incorporate a hybrid learning procedure into the control system. The traffic responsive metering rate is determined in every minute by the neuro-fuzzy control algorithm. Coordination between multiple on-ramps is ensured by the integration of a common input into all ramp controllers upstream of a bottleneck and a periodical update of the fuzzy control system in every 15 min. by a hybrid learning procedure. The objective of the online tuning process of the fuzzy parameters is to minimize the total time spent in the system. Therefore, Payne's traffic flow model and a deterministic queuing model are integrated into the control architecture To assess the impacts of the neuro-fuzzy ramp metering algorithm a section of 25 km of the A9 Autobahn was simulated with the FREQ model and compared with two other control scenarios. The results of the simulation of the neuro-fuzzy algorithm are very promising and an implementation of the neuro-fuzzy ramp metering system on a Munich middle ring road within the MOBINET project is planned.