In-database analytics with ibmdbpy

Edouard Fouché, Alexander Eckert, Klemens Böhm
{"title":"In-database analytics with ibmdbpy","authors":"Edouard Fouché, Alexander Eckert, Klemens Böhm","doi":"10.1145/3221269.3223026","DOIUrl":null,"url":null,"abstract":"The increasing size of the available data and database volumes represents a real challenge for the data management community. In general, current approaches in data mining require the data to be first extracted from an underlying database. From a practical point of view, this presents many drawbacks. In this short article, we present a possible solution to bridge the gap between data repositories and end user analysis. We demonstrate the interestingness of this approach with ibmdbpy, an open source Python interface developed by IBM for database administration and data analytics.","PeriodicalId":365491,"journal":{"name":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3221269.3223026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The increasing size of the available data and database volumes represents a real challenge for the data management community. In general, current approaches in data mining require the data to be first extracted from an underlying database. From a practical point of view, this presents many drawbacks. In this short article, we present a possible solution to bridge the gap between data repositories and end user analysis. We demonstrate the interestingness of this approach with ibmdbpy, an open source Python interface developed by IBM for database administration and data analytics.
使用ibmdbpy进行数据库内分析
可用数据和数据库容量的不断增长对数据管理界来说是一个真正的挑战。一般来说,当前的数据挖掘方法要求首先从底层数据库中提取数据。从实际的角度来看,这有许多缺点。在这篇简短的文章中,我们提出了一个可能的解决方案来弥合数据存储库和最终用户分析之间的差距。我们用IBM为数据库管理和数据分析开发的开源Python接口ibmdbpy演示了这种方法的有趣之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信