Learning the Mapping Rules for Sentiment Analysis

Web-KR '14 Pub Date : 2014-11-03 DOI:10.1145/2663792.2663796
Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo
{"title":"Learning the Mapping Rules for Sentiment Analysis","authors":"Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo","doi":"10.1145/2663792.2663796","DOIUrl":null,"url":null,"abstract":"There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.
学习情感分析的映射规则
越来越多的人在微博(如Twitter)上发表自己的感受。对推文的情绪分析使组织能够监控公众对产品或品牌的感受。在本文中,我们将情感分析问题建模为一种多分类方法,该方法利用了各种特征类型,包括推文中的谓词-参数关系、话题标签、提及和情感。我们描述了一个能够表示tweet中不同特征类型的内容结构对应(CSC)模型。我们提出了一个概念层次来表达推文的特征。使用多分类方法将tweet内容映射到概念层次结构。学习映射模式来识别tweet的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信