Automatic image annotation based on vocabulary prior probability

Zongyu Lan, Shaozi Li, Donglin Cao, Xiao Ke
{"title":"Automatic image annotation based on vocabulary prior probability","authors":"Zongyu Lan, Shaozi Li, Donglin Cao, Xiao Ke","doi":"10.1109/ICICISYS.2010.5658263","DOIUrl":null,"url":null,"abstract":"Automatic image annotation is an important and challenging task in computer vision. The existing models only use low-levels features of images to do the approximate calculation, without considering the influence of semantic information. This paper proposes a new automatic image annotation algorithm based on the vocabulary prior probability. It can solve the semantic gap to a certain extent. The algorithm is divided into two stages, first according to the existing generative model calculated the initial annotation word, and then calculated image similarity with considering the annotated words to improve the result of the annotation. The experiments over Corel5k images have shown the proposed method can effectively improve the rate of the annotation's accuracy and recall.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic image annotation is an important and challenging task in computer vision. The existing models only use low-levels features of images to do the approximate calculation, without considering the influence of semantic information. This paper proposes a new automatic image annotation algorithm based on the vocabulary prior probability. It can solve the semantic gap to a certain extent. The algorithm is divided into two stages, first according to the existing generative model calculated the initial annotation word, and then calculated image similarity with considering the annotated words to improve the result of the annotation. The experiments over Corel5k images have shown the proposed method can effectively improve the rate of the annotation's accuracy and recall.
基于词汇先验概率的图像自动标注
图像自动标注是计算机视觉领域的一个重要课题。现有模型仅利用图像的低级特征进行近似计算,没有考虑语义信息的影响。提出了一种基于词汇先验概率的图像自动标注算法。它可以在一定程度上解决语义缺口问题。该算法分为两个阶段,首先根据现有的生成模型计算初始标注词,然后在考虑标注词的情况下计算图像相似度,以提高标注结果。在Corel5k图像上的实验表明,该方法可以有效提高标注的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信