A Log-Beta Rayleigh Lomax Regression Model

N. Badmus, M. Akinyemi, J. N. Onyeka-Ubaka
{"title":"A Log-Beta Rayleigh Lomax Regression Model","authors":"N. Badmus, M. Akinyemi, J. N. Onyeka-Ubaka","doi":"10.16929/as/2021.2993.192","DOIUrl":null,"url":null,"abstract":"For the first time, a location-scale regression model based on the logarithm of an extended Raleigh Lomax distribution which has the ability to deal and model of any survival data than classical regression model is introduced. We obtain the estimate for the model parameters using the method of maximum likelihood by considering breast cancer data. In addition, normal probability plot of the residual is used to detect the outliers and evaluate model assumptions. We use a real data set to illustrate the performance of the new model, some of its submodels and classical models consider in the study. Also, we perform the statistics AIC, BIC and CAIC to select the most appropriate model among those regression models considered in the study.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2021.2993.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, a location-scale regression model based on the logarithm of an extended Raleigh Lomax distribution which has the ability to deal and model of any survival data than classical regression model is introduced. We obtain the estimate for the model parameters using the method of maximum likelihood by considering breast cancer data. In addition, normal probability plot of the residual is used to detect the outliers and evaluate model assumptions. We use a real data set to illustrate the performance of the new model, some of its submodels and classical models consider in the study. Also, we perform the statistics AIC, BIC and CAIC to select the most appropriate model among those regression models considered in the study.
一个Log-Beta Rayleigh Lomax回归模型
首次提出了一种基于扩展罗利-洛马克斯分布对数的位置尺度回归模型,该模型比经典回归模型具有处理和建模任何生存数据的能力。结合乳腺癌数据,采用极大似然法对模型参数进行了估计。此外,残差的正态概率图用于检测异常值和评估模型假设。我们用一个真实的数据集来说明新模型的性能,它的一些子模型和经典模型在研究中考虑。同时,通过统计AIC、BIC和CAIC,从研究中考虑的回归模型中选择最合适的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信