Leonária Araújo Silva, Lucas Benício Rodrigues Araújo, Ana Karoliny Lemos Bezerra, Arthur Hermont Fonseca Murta, L. Babadopulos, Marcelo Silva Medeiros Júnior
{"title":"Modelagem preditiva de propriedades mecânicas em concretos reforçados com fibra de aço utilizando redes neurais artificiais","authors":"Leonária Araújo Silva, Lucas Benício Rodrigues Araújo, Ana Karoliny Lemos Bezerra, Arthur Hermont Fonseca Murta, L. Babadopulos, Marcelo Silva Medeiros Júnior","doi":"10.1590/s1678-86212022000200602","DOIUrl":null,"url":null,"abstract":"Resumo Este artigo teve como foco a estimativa de propriedades mecânicas essenciais à concepção de estruturas de concreto mediante um modelo confiável de predição da resistência à compressão, à tração e à flexão de concreto reforçado com fibra de aço (CRFA) utilizando redes neurais artificias (RNA), bem como avaliar a influência do teor de fibras nessas propriedades. A pesquisa utilizou um banco de dados com 57 estudos experimentais descritos na literatura, sendo implementado um modelo de rede neural com 12 variáveis de entrada, 1 de saída e 2 camadas ocultas com 16 neurônios. Como resultados, obtiveram-se as seguintes métricas indicadoras da qualidade do ajuste: um erro quadrático médio (MSE) de 22,63, 0,08 e 0,80, e um erro absoluto médio (MAE) de 3,64, 0,24 e 0,74 respectivamente para as resistências à compressão, à tração e à flexão. A análise da sensibilidade evidenciou que houve aumento considerável nas resistências à tração e à flexão com uso de fibras, o que é esperado. Os resultados confirmaram a capacidade de o modelo reproduzir de forma confiável as propriedades mecânicas do CRFA.","PeriodicalId":156283,"journal":{"name":"Ambiente Construído","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ambiente Construído","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1678-86212022000200602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Resumo Este artigo teve como foco a estimativa de propriedades mecânicas essenciais à concepção de estruturas de concreto mediante um modelo confiável de predição da resistência à compressão, à tração e à flexão de concreto reforçado com fibra de aço (CRFA) utilizando redes neurais artificias (RNA), bem como avaliar a influência do teor de fibras nessas propriedades. A pesquisa utilizou um banco de dados com 57 estudos experimentais descritos na literatura, sendo implementado um modelo de rede neural com 12 variáveis de entrada, 1 de saída e 2 camadas ocultas com 16 neurônios. Como resultados, obtiveram-se as seguintes métricas indicadoras da qualidade do ajuste: um erro quadrático médio (MSE) de 22,63, 0,08 e 0,80, e um erro absoluto médio (MAE) de 3,64, 0,24 e 0,74 respectivamente para as resistências à compressão, à tração e à flexão. A análise da sensibilidade evidenciou que houve aumento considerável nas resistências à tração e à flexão com uso de fibras, o que é esperado. Os resultados confirmaram a capacidade de o modelo reproduzir de forma confiável as propriedades mecânicas do CRFA.