On super edge magic deficiency of kite graphs

Ars Comb. Pub Date : 2020-01-11 DOI:10.12732/ijam.v32i6.6
A. Ahmad, M. K. Siddiqui, M. Nadeem, M. Imran
{"title":"On super edge magic deficiency of kite graphs","authors":"A. Ahmad, M. K. Siddiqui, M. Nadeem, M. Imran","doi":"10.12732/ijam.v32i6.6","DOIUrl":null,"url":null,"abstract":"Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and Muntaner-Batle defined a similar concept for super edge magic total labelings. The super edge magic deficiency of a graph G, which is denoted by μs(G), is the minimum nonnegative integer n such that G∪nK1, has a super edge magic total labeling or it is equal to +∞ if there exists no such n. In this paper, we study the super edge magic deficiency of kite graphs.","PeriodicalId":378960,"journal":{"name":"Ars Comb.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Comb.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v32i6.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and Muntaner-Batle defined a similar concept for super edge magic total labelings. The super edge magic deficiency of a graph G, which is denoted by μs(G), is the minimum nonnegative integer n such that G∪nK1, has a super edge magic total labeling or it is equal to +∞ if there exists no such n. In this paper, we study the super edge magic deficiency of kite graphs.
论风筝图的超边魔法缺陷
摘要:图G的边幻标记是一个双射λ: V (G)∪E(G)→{1,2,…V (G) | | + | E (G) |}这样λ(u) +λ(紫外线)+λ(V)是常数,每边uv∈E (G)。边缘幻缺的概念是由Kotzig和Rosas提出的。受这个概念的启发,Figueroa-Centeno、Ichishima和muntaner - battle为超级边缘魔法总标签定义了一个类似的概念。图G的超边幻缺量,用μs(G)表示,是使G∪nK1有一个超边幻全标记,或者在不存在的情况下等于+∞的最小非负整数n。本文研究风筝图的超边幻缺量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信